logo
msepmenj (2) / Лекции / Моделирование соц-экономич процессов

Понятие модели и моделирования. Классификация видов моделирования и моделей систем

При использовании метода моделирования свойства и поведение объекта изучают путем применения вспомогательной системы – модели, находящейся в определенном объективном соответствии с исследуемым объектом.

Под объектом исследования понимается либо некоторая система, элементы которой в процессе достижения конечной цели реализуют один или несколько процессов, либо некоторый процесс, реализуемый элементами одной или нескольких систем. В связи с этим в дельнейшем тексте термины «модель объекта», «модель системы», «модель процесса» следует воспринимать как эквивалентные.

Представления о тех или иных свойствах объектов, их взаимосвязях формируются исследователем в виде описания этих объектов на обычном языке, в виде рисунков, графиков, формул или реализуются в виде макетов и других устройств. Подобные способы описания обобщаются в едином понятии – модель, а построение и изучение моделей называетсямоделированием.

Заслуживает предпочтения следующее определение: модель – объект любой природы, который создается исследователем с целью получения новых знаний об объекте-оригинале и отражает только существенные (с точки зрения разработчика) свойства оригинала.

Модель считается адекватнойобъекту-оригиналу, если она с достаточной степенью приближения на уровне понимания моделируемого процесса исследователем отражает закономерности процесса функционирования реальной системы во внешней среде.

Модели позволяют вынести упрощенное представление о системе и получить некоторые результаты намного проще, чем при изучении реального объекта. Более того, гипотетически модели объекта могут быть исследованы и изучены перед тем, как объект будет создан.

В практике исследования производственно-экономических объектов модели могут применяться для самых разных целей, что вызывает использование моделей различных классов. Построение одной-единственной математической модели для сложной производственной системы практически не представляется возможным без разработки вспомогательных моделей. Поэтому, как правило, при создании конечной математической модели исследуемого объекта строят частные вспомогательные модели, отражающие ту или иную информацию об объекте, имеющуюся у разработчика на данном этапе построения модели.

В основе моделирования лежит теория подобия, которая утверждает, что абсолютное подобие может иметь место лишь при замене одного объекта другим точно таким же. При моделировании абсолютное подобие не имеет места и стремятся к тому, чтобы модель достаточно хорошо отображала исследуемую сторону функционирования объекта.

Классификационные признаки. В качестве одного из первых признаков классификации видов моделирования можно выбрать степень полноты модели и разделить модели в соответствии с этим признаком на полные, неполные и приближенные. В основе полного моделирования лежит полное подобие, которое проявляется как во времени, так и в пространстве. Для неполного моделирования характерно неполное подобие модели изучаемому объекту. В основе приближенного моделирования лежит приближенное подобие, при котором некоторые стороны функционирования реального объекта не моделируются совсем. Классификация видов моделирования системS приведена на рис.1.1.

В зависимости от характера изучаемых процессов в системе Sвсе виды моделирования могут быть разделены на детерминированные и стохастические, статические и динамические, дискретные, непрерывные и дискретно-непрерывные.Детерминированное моделированиеотображает детерминированные процессы, т.е. процессы, в которых предполагается отсутствие всяких случайных воздействий;стохастическое моделированиеотображает вероятностные процессы и события. В этом случае анализируется ряд реализаций случайного процесса и оцениваются средние характеристики, т.е. набор однородных реализаций.Статическое моделированиеслужит для описания поведения объекта в какой-либо момент времени, адинамическое моделированиеотражает поведение объекта во времени.Дискретное моделированиеслужит для описания процессов, которые предполагаются дискретными, соответственно непрерывное моделирование позволяет отразить непрерывные процессы в системах, адискретно-непрерывное моделированиеиспользуется для тех случаев, когда хотят выделить наличие как дискретных, так и непрерывных процессов.

В зависимости от формы представления объекта (системы S) можно выделить мысленное и реальное моделирование.

Мысленное моделирование часто является единственным способом моделирования объектов, которые либо практически нереализуемы в заданном интервале времени, либо существуют вне условий, возможных для их физического создания. Например, на базе мысленного моделирования могут быть проанализированы многие ситуации микромира, которые не поддаются физическому эксперименту. Мысленное моделирование может быть реализовано в виде наглядного, символического и математического.

Рис. 1.1. Классификация видов моделирования систем

При наглядном моделированиина базе представлений человека о реальных объектах создаются различные наглядные модели, отображающие явления и процессы, протекающие в объекте. В основугипотетического моделированияисследователем закладывается некоторая гипотеза о закономерностях протекания процесса в реальном объекте, которая отражает уровень знаний исследователя об объекте и базируется на причинно-следственных связях между входом и выходом изучаемого объекта. Гипотетическое моделирование используется, когда знаний об объекте недостаточно для построения формальных моделей.

Аналоговое моделированиеосновывается на применении аналогий различных уровней. Наивысшим уровнем является полная аналогия, имеющая место только для достаточно простых объектов. С усложнением объекта используют аналогии последующих уровней, когда аналоговая модель отображает несколько либо только одну сторону функционирования объекта.

Существенное место при мысленном наглядном моделировании занимает макетирование. Мысленный макет может применяться в случаях, когда протекающие в реальном объекте процессы не поддаются физическому моделированию, либо может предшествовать проведению других видов моделирования. В основе построения мысленных макетов также лежат аналогии, однако обычно базирующиеся на причинно-следственных связях между явлениями и процессами в объекте. Если ввести условное обозначение отдельных понятий, т.е. знаки, а также определенные операции между этими знаками, то можно реализоватьзнаковое моделированиеи с помощью знаков отображать набор понятий – составлять отдельные цепочки из слов и предложений. Используя операции объединения, пересечения и дополнения теории множеств, можно в отдельных символах дать описание какого-то реального объекта.

В основе языкового моделированиялежит некоторый тезаурус. Последний образует из наборов входящих понятий, причем этот набор должен быть фиксированным. Следует отметить, что между тезаурусом и обычным словарем имеются принципиальные различия. Тезаурус – словарь, который очищен от неоднозначности, т.е. в нем каждому слову может соответствовать лишь единственное понятие, хотя в обычном словаре одному слову могут соответствовать несколько понятий.

Символическое моделирование представляет собой искусственный процесс создания логического объекта, который замещает реальный и выражает основные свойства его отношений с помощью определенной системы знаков и символов.

Математическое моделирование. Для исследования характеристик процесса функционирования любой системыSматематическими методами, включая и машинные, должна быть проведена формализация этого процесса, т.е. построена математическая модель.

Под математическим моделированием будем понимать процесс установления соответствия данному реальному объекту некоторого математического объекта, называемого математической моделью, и исследование этой модели, позволяющее получать характеристики рассматриваемого реального объекта. Вид математической модели зависит как от природы реального объекта, так и задач исследования объекта и требуемой достоверности и точности решения этой задачи. Любая математическая модель, как и всякая другая, описывает реальный объект лишь с некоторой степенью приближения к действительности. Математическое моделирование для исследования характеристик процесса функционирования систем можно разделить на аналитическое, имитационное и комбинированное.

Для аналитическогомоделирования характерно то, что процессы функционирования элементов системы записываются в виде некоторых функциональных соотношений (алгебраических, интегродифференциальных, конечно-разностных и т.п.) или логических условий.Аналитическая модельможет быть исследована следующими методами: а) аналитическим, когда стремятся получить в общем виде явные зависимости для искомых характеристик; б) численным, когда, не умея решать уравнения в общем виде, стремятся получить числовые результаты при конкретных начальных данных; в) качественным, когда, не имея решения в явном виде, можно найти некоторые свойства решения (например, оценить устойчивость решения).

Наиболее полное исследование процесса функционирования системы можно провести, если известны явные зависимости, связывающие искомые характеристики с начальными условиями, параметрами и переменными системы S. Однако такие зависимости удается получить только для сравнительно простых систем. При усложнении систем исследование их аналитическим методом наталкивается на значительные трудности, которые часто бывают непреодолимыми. Поэтому, желая использовать аналитический метод, в этом случае идут на существенное упрощение первоначальной модели, чтобы иметь возможность изучить хотя бы общие свойства системы. Такое исследование на упрощенной модели аналитическим методом помогает получить ориентировочные результаты для определения более точных оценок другими методами. Численный метод позволяет исследовать по сравнению с аналитическим методом более широкий класс систем, но при этом полученные решения носят частный характер. Численный метод особенно эффективен при использовании ЭВМ.

В отдельных случаях исследования системы могут удовлетворить и те выводы, которые можно сделать при использовании качественного метода анализа математической модели. Такие качественные методы широко используются, например, в теории автоматического управления для оценки эффективности различных вариантов систем управления.

В настоящее время распространены методы машинной реализации исследования характеристик процесса функционирования больших систем. Для реализации математической модели на ЭВМ необходимо построить соответствующий моделирующий алгоритм.

При имитационном моделированииреализующий модель алгоритм воспроизводит процесс функционирования системыSво времени, причем имитируются элементарные явления, составляющие процесс с сохранением их логической структуры и последовательности протекания во времени, что позволяет по исходным данным получить сведения о состояниях процесса в определенные моменты времени, дающие возможность оценить характеристики системыS.

Основным преимуществом имитационного моделирования по сравнению с аналитическим является возможность решения более сложных задач. Имитационные модели позволяют достаточно просто учитывать такие факторы, как наличие дискретных и непрерывных элементов, нелинейные характеристики элементов системы, многочисленные случайные воздействия и др., которые часто создают трудности при аналитических исследованиях. В настоящее время имитационное моделирование – наиболее эффективный метод исследования больших систем, а часто и единственный практически доступный метод получения информации о поведении системы, особенно на этапах ее проектирования.

Когда результаты, полученные при воспроизведении на имитационной модели процесса функционирования системы S,Являются реализациями случайных величин и функций, тогда для нахождения характеристик процесса требуется его многократное воспроизведение с последующей статистической обработкой информации и целесообразно в качестве метода машинной реализации имитационной модели использовать метод статистического моделирования. Первоначально был разработан метод статистических испытаний, представляющий собой численный метод, который применялся для моделирования случайных величин и функций, вероятностные характеристики которых совпадали с решениями аналитических задач (такая процедура получила название метода Монте-Карло). Затем этот прием стали применять и для машинной имитации с целью исследования характеристик процессов функционирования систем, подверженных случайным воздействиям, т.е. появился метод статистического моделирования. Таким образом,методом статистического моделированиябудем в дальнейшем называть метод машинной реализации имитационной модели, аметодом статистических испытаний (Монте-Карло)– численный метод решения аналитической задачи.

Метод имитационного моделирования позволяет решать задачи анализа больших систем S, включая задачи оценки: вариантов структуры системы, эффективности различных алгоритмов управления системой, влияния изменения различных параметров системы. Имитационное моделирование может быть положено также в основу структурного, алгоритмического и параметрического синтеза больших систем, когда требуется создать систему, с заданными характеристиками при определенных ограничениях, которая является оптимальной по некоторым критериям оценки эффективности.

При решении задач машинного синтеза систем на основе их имитационных моделей помимо разработки моделирующих алгоритмов для анализа фиксированной системы необходимо также разработать алгоритмы поиска варианта системы. Бале в методологии машинного моделирования будем различать два основных раздела: статику и динамику, – основным содержанием которых являются соответственно вопросы анализа и синтеза систем, заданных моделирующими алгоритмами.

Комбинированное (аналитико-имитационное) моделированиепри анализе и синтезе систем позволяет объединить достоинства аналитического и имитационного моделирования. При построении комбинированных моделей проводится предварительная декомпозиция процесса функционирования объекта на составляющие подпроцессы и для тех из них, где это возможно, используются аналитические модели. Такой комбинированный подход позволяет охватить качественно новые классы систем, которые не могут быть исследованы с использованием только аналитического и имитационного моделирования в отдельности.

Другие виды моделирования. Приреальном моделированиииспользуется возможность исследования различных характеристик либо на реальном объекте целиком, либо на его части. Такие исследования могут проводиться как на объектах, работающих в нормальных режимах, так и при организации специальных режимов для оценки интересующих исследователя характеристик (при других значениях переменных и параметров, в другом масштабе времени и т.п.). Реальное моделирование является наиболее адекватным, но при этом его возможности с учетом особенностей реальных объектов ограничены. Например, проведение реального моделирования АСУ предприятием потребует, во-первых, создания такой АСУ, а во-вторых, проведения экспериментов с управляемым объектом, т.е. предприятием, что в большинстве случаев невозможно.

К основным разновидностям реального моделирования относятся:

С точки зрения математического описания объекта и в зависимости от его характера модели можно разделить на модели аналоговые (непрерывные), цифровые (дискретные) и аналого-цифровые (комбинированные). Под аналоговой модельюпонимается модель, которая описывается уравнениями, связывающими непрерывные величины. Подцифровойпонимается модель, которая описывается уравнениями, связывающими дискретные величины, представленные в цифровом виде. Поданалого-цифровойпонимается модель, которая может быть описана уравнениями, связывающими непрерывные и дискретные величины.

Особое место в моделировании занимает кибернетическое моделирование, в котором отсутствует непосредственное подобие физических процессов, происходящих в моделях, реальным процессам. В этом случае стремятся отобразить лишь некоторую функцию и рассматривают реальный объект как «черный ящик», имеющий ряд входов и выходов, и моделируют некоторые связи между выходами и входами. Чаще всего при использовании кибернетических моделей проводят анализ поведенческой стороны объекта при различных воздействиях внешней среды. Таким образом, в основе кибернетических моделей лежит отражение некоторых информационных процессов управления, что позволяет оценить поведение реального объекта. Для построения имитационной модели в этом случае необходимо выделить исследуемую функцию реального объекта, попытаться формализовать эту функцию в виде некоторых операторов связи между входом и выходом и воспроизвести на имитационной модели данную функцию, причем на базе совершенно иных математических соотношений и, естественно, иной физической реализации процесса.

Целевое назначение модели.По целевому назначению модели подразделяются на модели структуры, функционирования и стоимостные (модели расхода ресурсов).

Модели структурыотображают связи между компонентами объекта и внешней средой и подразделяются на:

Модель структуры обычно представляется в виде блок-схемы, реже графов и матриц связей.

Модели функционированиявключают широкий спектр символических моделей, например:

модель жизненного цикла системы,описывающая процессы существования системы от зарождения замысла ее создания до прекращения функционирования;

модели операций, выполняемых объектом и представляющих описание взаимосвязанной совокупности процессов функционирования отдельных элементов объекта при реализации тех или иных функций объекта. Так, в состав моделей операций могут входить модели надежности, характеризующие выход элементов системы из строя под влиянием эксплуатационных факторов, и модели живучести факторов, характеризующие выход элементов системы из строя под влиянием целенаправленного воздействия внешней среды;

информационные модели, отображающие во взаимосвязи источники и потребители информации, виды информации, характер ее преобразования, а также временные и количественные характеристики данных;

процедурные модели,описывающие порядок взаимодействия элементов исследуемого объекта при выполнении различных операций, например обработки материалов, деятельности персонала, использования информации, в том числе и реализации процедур принятия управленческих решений;

временные модели,описывающие процедуру функционирования объекта во времени и распределение ресурса «время» по отдельным компонентам объекта.

Стоимостные модели,как правило, сопровождают модели функционирования объекта и по отношению к ним вторичны, «питаются» от них информацией и совместно с ними позволяют проводить комплексную технико-экономическую оценку объекта или его оптимизацию по экономическим критериям.

При анализе и оптимизации производственно-экономических объектов проводится объединение построенных математических функциональных моделей с математическими стоимостными моделями в единую экономико-математическую модель.

Насколько можно судить по литературным источникам общепринятой классификации моделей экономических систем пока не существует. Однако представляется достаточно полезной классификация математических моделей экономических систем, приведенная в книге Т. Нейлора «Машинные имитационные эксперименты с моделями экономических систем» (1971 г.) (рис. 1.2).

Рис.1.2. Классификация экономических моделей

Экономико-математической моделью (ЭММ)называется выражение, состоящее из совокупности связанных между собой математическими зависимостями (формулами, уравнениями, неравенствами, логическими условиями величин – факторов, все или часть которых имеют экономический смысл. По своей роли в ЭММ эти факторы целесообразно подразделить на параметры и характеристики (рис. 1.3).

Рис. 1.3. Классификация факторов по их роли в ЭВМ

При этом параметрамиобъекта называются факторы, характеризующие свойства объекта или составляющих его элементов. В процессе исследования объекта ряд параметров может изменяться, поэтому они называютсяпеременными,которые в свою очередь подразделяются на переменные состояния и переменные управления. Как правило, переменные состояния объекта являются функцией переменных управления и воздействий внешней среды.Характеристиками(выходными характеристиками) называются интересующие исследователя непосредст-венные конечные результаты функционирования объекта (естественно, что выходные характеристики являются переменными состояния). Соответственно характеристики внешней среды описывают свойства внешней среды, которые сказываются на процессе и результате функционирования объекта. Значения ряда факторов, определяющие начальное состояние объекта или внешней среды, называютсяначальными условиями.

При рассмотрении ЭММ оперируют следующими понятиями: критерий оптимальности, целевая функция, система ограничений, уравнения связи, решение модели.

Критерием оптимальностиназывается некоторый показатель, имеющий экономическое содержание, служащий формализацией конкретной цели управления и выражаемый при помощи целевой функции через факторы модели. Критерий оптимальности определяет смысловое содержание целевой функции. В ряде случаев в качестве критерия оптимальности может выступать одна из выходных характеристик объекта.

Целевая функцияматематически связывает между собой факторы модели, ее значение определяется значениями этих величин. Содержательный смысл целевой функции придает только критерий оптимальности.

Не следует смешивать критерий оптимальности и целевую функцию. Так, например, критерий прибыли и стоимости произведенной продукции могут описываться одной и той же целевой функцией:

, (1.1)

где – номенклатура производимой продукции;– объем выпускаi-ой номенклатуры;– прибыль от выпуска единицыi-ой номенклатуры или стоимость единицыi-ой номенклатуры в зависимости от смысла критерия оптимальности.

Критерий прибыли может рассчитываться и по нелинейной целевой функции:

, (1.2)

Если прибыль от выпуска единицы i-ой номенклатуры является функцией от объема выпуска.

При наличии нескольких критериев оптимальности каждый из них будет формализован своей частной целевой функцией , где– число критериев оптимальности. Для однозначного выбора оптимального решения исследователь может сформулировать новую целевую функцию

. (1.3)

Однако целевая функция может уже не нести экономического смысла, в этом случае критерий оптимальности для нее отсутствует.

Система ограниченийопределяет пределы, сужающие область осуществимых, приемлемых или допустимых решений и фиксирующие основные внешние и внутренние свойства объекта. Ограничения определяют область протекания процесса, пределы изменения параметров и характеристик объекта.

Уравнения связиявляются математической формализацией системы ограничений. Между понятиями «система ограничений» и «Уравнения связи» существует точно такая же аналогия, как между понятиями «критерий оптимальности» и «целевая функция»: различные по смыслу ограничения могут описываться одинаковыми уравнениями связи, а одно и то же ограничение в разных моделях записываться различными уравнениями связи.

Таким образом, именно критерий оптимальности и система ограничений в первую очередь определяют концепцию построения будущей математической модели, т.е. концептуальную модель, а их формализация, т.е. целевая функция и уравнения связи, представляют собой математическую модель.

Решениемматематической модели называется такой набор (совокупность) значений переменных, который удовлетворяет ее уравнениям связи. Решения, имеющие экономический смысл, называют структурно допустимыми. Модели, имеющие много решений, называются вариантными в отличие от безвариантных, имеющих одно решение. Среди структурно допустимых решений вариантной модели, как правило, находится одно решение, при котором целевая функция в зависимости от смысла модели имеет наибольшее или наименьшее значение. Такое решение, как и соответствующее значение целевой функции, называетсяоптимальным(в частности, наименьшим или наибольшим).

Использование ЭММ, особенно оптимальных, предполагает не только построение модели, соответствующей поставленной задаче, но и ее решение при помощи подходящего метода. В связи с этим иногда под моделированием (в узком смысле) понимается этап нахождения решения модели, т.е. вычисления значений исследуемых характеристик и определение оптимальности различных вариантов изучаемого объекта с целью выбора наилучшего варианта его построения и функционирования. Данный этап представляет собой реализацию и исследование ЭММ на определенном наборе вычислительных средств. Выбор метода решения оптимизационных ЭММ зависит от математической формы, связывающей факторы модели, наличия тех или иных признаков (учет динамики, учет стохастичности и т.д.). С точки зрения корректного выбора метода решения модели наиболее существенными признаками являются характер цели исследования, формализованность связей между параметрами и характеристиками, учет вероятностной природы объекта, а также фактора времени.

По характеру цели исследования ЭММ делятся на оптимизационные(нормативные) иописательные(дескриптивные или ЭММ прямого счета).

Характерной чертой оптимизационных моделей является наличие одной или нескольких целевых функций. При этом в первом случае оптимизационные ЭММ называются монокритериальными, а во втором –многокритериальными. В общем виде монокритериальная ЭММ может быть представлена следующей системой отношений:

; (1.4)

, (1.5)

где Е– критерий оптимальности объекта;– управляемые переменные,;– неуправляемые факторы модели;;– уравнения связи, представляющие собой формализацию системы ограничений,;– целевая функция – формализованное выражение критерия оптимальности.

Выражение означает, что в ограничениях может стоять любое из приведенных в фигурных скобках логических условий.

Решение модели, заданной соотношениями (1.4) и (1.5), заключается в нахождении совокупности значений переменных

,

Обращающий в max(илиmin) целевую функциюЕпри заданных уравнениях связи.

Специфика конкретных задач управления производством определила разнообразие типов оптимизационных ЭММ. Это вызвало для ряда наиболее часто повторяющихся типов ситуаций разработку «стандартных» экономико-математических методов их описания, например, распределительные задачи различных классов, задачи управления запасами, ремонта и замены оборудования, проектирования сетей и выбора маршрутов и т.д.

Существенным признаком описательных моделей является отсутствие в них критерия оптимальности. Решение, даваемое ЭММ прямого счета, обеспечивает либо вычисление набора выходных характеристик объекта для одного или нескольких вариантов начальных условий и входных характеристик объекта, либо нахождение какой-либо совокупности значений в структурно допустимой области решений. Примеры типовых задач управления машиностроительным производством, решаемых с помощью описательных моделей, приведены в табл. 1.1.

Таблица 1.1. Примеры описательных моделей

Тип задачи

Вид модели

Математический метод решения

Задачи планирования без оптимизации (расчет объемов производства по видам продукции, увязка планов производства с ресурсами и т.п.)

Балансовые модели

Аппарат линейной алгебры, матричное исчисление

Задачи сетевого планирования и управление (СПУ) без оптимизации

Расчет по формулам модели СПУ

Аппарат теории графов

Задача учета и статистики (оперативный учет, получение различных форм отчетности и т.п.)

Расчет по формулам

Задачи контроля и анализа (анализ влияния и факторов, выявление тенденций, отслеживание отклонений и установление их причин)

Статистические модели обработки реализаций случайных величин

Факторный анализ, дисперсионный анализ, регрессионный анализ

Задача создания нормативной базы

Статистические модели обработки реализаций случайных величин

Расчет параметров функционирования сложных систем с неформализованными связями.

Расчет по формулам имитационных моделей

Задачи прогнозирования

Модели регрессионного анализа, оценка параметров и проверка статистических гипотез

Факторный анализ, дисперсионный анализ, регрессионный анализ, аппарат математической статистики

Тип задачи

Вид модели

Математический метод решения

Прочие задачи, связанные с рутинными процессами переработки информации, т.е. с расчетами по заданным формулам (расчеты подетальных спецификаций, потребности в оборудовании и производственных площадях и другие расчеты технической подготовки производства)

В зависимости от степени формализованности связей f иgiмежду факторами моделей в выражениях (1.4) и (1.5) различаютаналитическиеиалгоритмическиемодели.

Аналитическойформой записи называется запись математической модели в виде алгебраических уравнений или неравенств, не имеющих разветвлений вычислительного процесса при определении значений любых переменных состояния модели, целевой функции и уравнений связи. Если в математических моделях единственная целевая функцияf и ограниченияgj заданы аналитически, то подобные модели относятся к классу моделей математического программирования. Характер функциональных зависимостей, выраженных в функцияхf иgj , может быть линейным и нелинейным. Соответственно этому ЭММ делятся налинейныеинелинейные, а среди последних в специальные классы выделяютсядробно-линейные,кусочно-линейные,квадратичныеивыпуклыемодели.

Если мы имеем дело со сложной системой, то зачастую гораздо легче построить ее модель в виде алгоритма, показывающего отношения между элементами системы в процессе ее функционирования, задаваемые обычно в виде логических условий – разветвлений хода течения процесса. Математическое описание для элементов может быть очень простым, однако взаимодействие большого количества простых по математическому описанию элементов и делает эту систему сложной. Алгоритмически же можно описывать даже такие объекты, которые в силу их сложности или громоздкости в принципе не допускают аналитического описания. В связи с этим к алгоритмическиммоделям относятся такие, в которых критерии и (или) ограничения описываются математическими конструкциями, включающими логические условия, приводящие к разветвлению вычислительного процесса. К алгоритмическим моделям относятся и так называемые имитационные модели – моделирующие алгоритмы, имитирующие поведение элементов изучаемого объекта и взаимодействие между ними в процессе функционирования.

В зависимости от того, содержит ли ЭММ случайные факторы, она может быть отнесена к классу стохастическихилидетерминированных.

В детерминированныхмоделях ни целевая функцияf , ни уравнения связиgj не содержат случайных факторов. Следовательно, для данного множества входных значений модели на выходе может быть получен только один-единственный результат. ДлястохастическихЭММ характерно наличие среди факторовмодели, описываемой соотношениями (1.4) и (1.5), таких, которые имеют вероятностную природу и характеризуются какими-либо законами распределения, причем среди функцийf иgj могут быть и случайные функции. Значения выходных характеристик в таких моделях могут быть предсказаны только в вероятностном смысле. Реализация стохастических ЭММ в большинстве случаев осуществляется на ЭВМ методами имитационного статистического моделирования.

Следующим признаком, по которому можно различать ЭММ, является связь с фактором времени. Модели, в которых входные факторы, а следовательно, и результаты моделирования явно зависят от времени, называются динамическими, а модели, в которых зависимость от времениtлибо отсутствует совсем, либо проявляется слабо или неявно, называютстатическими. Интересны в этом отношении имитационные модели: по механизму функционирования они являются динамическими (в модели идет имитация работы объекта в течении некоторого периода времени), а по результатам моделирования – статическими (например, ищется средняя производительность объекта за моделируемый период времени).

Статические модели представляют собой известную степень приближения к реальным объектам и системам, функционирующим во времени. Во многих случаях степень такого приближения, проявляющаяся в допущениях о неизменности или различного рода усреднениях факторов во времени (косвенно или приблизительно учитывающих фактор времени в определенных границах его изменения), является достаточной для практического применения статических моделей.