22. Отношения Грина.
Введенные Дж. Грином пять фундаментальных отношений на полугруппах играют центральную роль при описании строения полугрупп как в локальном, так и в глобальном аспектах. В контрольной работе необходимо изучить основные свойства отношений Грина на конечных полугруппах и рассмотреть их приложение к описанию локальных свойств таких полугрупп. Рекомендуется следующий план работы:
1) Рассмотреть такие важные понятия теории полугрупп, как полугруппа преобразований и идеалы полугрупп, доказать основные свойства идеалов конечных полугрупп (/1/, с. 21-22, 35-42; /2/, с. 15-23).
2) Изучить определения и свойства отношений Грина на конечной полугруппе (/1/, с. 42-45; /2/, с. 72-77).
3) Рассмотреть приложения отношений Грина к описанию локального строения конечных полугрупп (/1/, с. 45-49).
4) Разобрать понятие группы Шютценберже D-класса конечной полугруппы и доказать ее свойства (/1/, с. 49-56; /2/, с. 93-96).
Литература, рекомендуемая для изучения темы
1 Лаллеман Ж. Полугруппы и комбинаторные приложения. – М.: Мир,
1985.
2 Клиффорд А., Престон Г. Алгебраическая теория полугрупп, Т. 1. –
М.: Мир, 1972.
Yandex.RTB R-A-252273-3
- Темы контрольных работ по дискретная математика
- 1. Эйлеровы графы .
- 2. Гамильтоновы графы.
- 1 Уилсон р. Дж. Введение в теорию графов. – м.: 1977.
- 3. Связность графа.
- 4. Циклы в графах.
- 1 Уилсон р. Введение в теорию графов. – м.: Мир, 1977.
- 5. Плоские графы.
- 1 Уилсон р. Введение в теорию графов. – м.: Мир, 1977.
- 2 Белов в.В., Воробьев е.М., Шаталов в.Е. Теория графов. – м.: вш,
- 3 Березина л.Ю. Графы и их применения: Пособие для учителей. – м.,
- 6. Деревья.
- 1) Изучить такие основополагающие понятия теории графов, как граф, маршрут и цикл (/1/, с. 9-43; /2/, с. 5-22).
- 7. Свойства эйлеровых графов.
- 8. Свойства гамильтоновых графов.
- 1 Уилсон р. Введение в теорию графов. – м.: Мир, 1977.
- 2 Белов в.В., Воробьев е.М., Шаталов в.Е. Теория графов. – м.: вш,
- 3 Березина л.Ю. Графы и их применения: Пособие для учителей. – м.,
- 9. Ориентированные графы.
- 1 Уилсон р. Введение в теорию графов. – м.: Мир, 1977.
- 2 Белов в.В., Воробьев е.М., Шаталов в.Е. Теория графов. – м.: вш,
- 3 Березина л.Ю. Графы и их применения: Пособие для учителей. – м.,
- 10. Паросочетания.
- 1 Уилсон р. Введение в теорию графов. – м.: Мир, 1977.
- 2 Белов в.В., Воробьев е.М., Шаталов в.Е. Теория графов. – м.: вш,
- 4 Березина л.Ю. Графы и их применения: Пособие для учителей. – м.,
- 11. Теория трансверсалей.
- 1 Уилсон р. Введение в теорию графов. – м.: Мир, 1977.
- 2 Белов в.В., Воробьев е.М., Шаталов в.Е. Теория графов. – м.: вш,
- 4 Березина л.Ю. Графы и их применения: Пособие для учителей. – м.,
- 12. Потоки в сетях.
- 1 Уилсон р. Введение в теорию графов. – м.: Мир, 1977.
- 2 Белов в.В., Воробьев е.М., Шаталов в.Е. Теория графов. – м.: вш,
- 4 Березина л.Ю. Графы и их применения: Пособие для учителей. – м.,
- 13. Производящие функции в теории графов.
- 14. Теорема Пойа и перечисление графов.
- 1 Уилсон р. Введение в теорию графов. – м.: Мир, 1977.
- 2 Белов в.В., Воробьев е.М., Шаталов в.Е. Теория графов. – м.: вш,
- 14. Графы на двумерных поверхностях.
- 1 Уилсон р. Введение в теорию графов. – м.: Мир, 1977.
- 2 Белов в.В., Воробьев е.М., Шаталов в.Е. Теория графов. – м.: вш,
- 3 Березина л.Ю. Графы и их применения: Пособие для учителей. – м.,
- 15. Конечные группы и их графы.
- 2 Оре о. Теория графов. – м.: Наука, 1968.
- 16. Теорема Рамсея и ее приложения.
- 2 Оре о. Теория графов. – м.: Наука, 1968.
- 17. Полугруппы преобразований.
- 18. Копредставления полугрупп.
- 19. Логика на словах.
- 20. Алгебры отношений и полугруппы преобразований.
- 21. Рациональные языки.
- Тема 71. Соответствие Эйленберга
- 22. Отношения Грина.
- 23. Декомпозиция конечных моноидов.
- 24. Рациональные и алгебраические языки над полукольцами.
- 25. Элементы теории конечных автоматов.
- 1 Белов в.В., Воробьев е.М., Шаталов в.Е. Теория графов. – м.: вш,
- 26. Минимизация чистых автоматов.
- 27. Конструкции чистых автоматов.
- 28. Цифровое шифрование.
- 29. Последовательности над конечным полем.
- 30. Решетки.