Дифференциальные уравнения высших порядков
Дифференциальное уравнение го порядка имеет вид:
или, если его можно разрешить относительно ой производной,
Для этих уравнений имеет место теорема о существовании и единственности решения:
Если в уравнении функция и её частные производные по аргументам непрерывны в некоторой области, содержащей значения то существует и притом единственное решение уравнения, удовлетворяющее условиям
Эти условия называются начальными условиями.
Общим решением дифференциального уравнения го порядка называется функция зависящая от произвольных постоянных и такая, что:
она удовлетворяет уравнению при любых значениях постоянных ;
при заданных начальных условиях
постоянные можно подобрать так, что функция будет удовлетворять этим условиям.
Всякая функция, получающаяся из общего решения при конкретных значениях постоянных , называется частным решением.
Yandex.RTB R-A-252273-3
- Дифференциальные уравнения Определения
- Дифференциальные уравнения первого порядка
- Уравнения с разделёнными и разделяющимися переменными
- Однородные уравнения первого порядка
- Линейные уравнения первого порядка
- Уравнение в полных дифференциалах
- Интегрирующий множитель
- Дифференциальные уравнения высших порядков
- Уравнения вида
- Уравнения второго порядка, приводящиеся к уравнениям первого порядка
- Линейные однородные уравнения. Определения и общие свойства
- Линейные однородные уравнения второго порядка с постоянными коэффициентами
- Линейные однородные уравнения го порядка с постоянными коэффициентами
- Неоднородные линейные уравнения второго порядка
- Неоднородные линейные уравнения второго порядка с постоянными коэффициентами
- Неоднородные линейные уравнения высших порядков
- Системы обыкновенных дифференциальных уравнений
- Системы линейных дифференциальных уравнений с постоянными коэффициентами