Differentsialnye_uravnenia_lektsii
Уравнения с разделёнными и разделяющимися переменными
Рассмотрим дифференциальное уравнение вида
где правая часть есть произведение функции, зависящей только от , на функцию, зависящую только от , преобразуем его следующим образом
Последнее равенство можно рассматривать как равенство двух дифференциалов, а неопределённые интегралы от них будут отличаться постоянным слагаемым. Интегрируя, получим
Дифференциальное уравнение типа
называют уравнением с разделёнными переменными. Общий интеграл его равен
.
Уравнение вида
называется уравнением с разделяющимися переменными. Оно может быть приведено к уравнению с разделёнными переменными путём деления обеих его частей на выражение :
,
или
Yandex.RTB R-A-252273-3
Содержание
- Дифференциальные уравнения Определения
- Дифференциальные уравнения первого порядка
- Уравнения с разделёнными и разделяющимися переменными
- Однородные уравнения первого порядка
- Линейные уравнения первого порядка
- Уравнение в полных дифференциалах
- Интегрирующий множитель
- Дифференциальные уравнения высших порядков
- Уравнения вида
- Уравнения второго порядка, приводящиеся к уравнениям первого порядка
- Линейные однородные уравнения. Определения и общие свойства
- Линейные однородные уравнения второго порядка с постоянными коэффициентами
- Линейные однородные уравнения го порядка с постоянными коэффициентами
- Неоднородные линейные уравнения второго порядка
- Неоднородные линейные уравнения второго порядка с постоянными коэффициентами
- Неоднородные линейные уравнения высших порядков
- Системы обыкновенных дифференциальных уравнений
- Системы линейных дифференциальных уравнений с постоянными коэффициентами