7.5. Сравнение методов анализа устойчивости нелинейных систем
Рассмотрим область устойчивости (рис.7.5.1) на плоскости обобщённых параметров α, β нелинейной системы. Из рассмотренных методов анализа устойчивости нелинейных систем только с помощью метода фазового пространства можно найти точную границу устойчивости. Этот метод позволяет найти как необходимое, так и достаточное условие устойчивости.
Прямой метод Ляпунова и частотный критерий абсолютной устойчивости В.М. Попова позволяют найти только достаточное, но не необходимое условие устойчивости. При этом области устойчивости (1 и 2) получаются меньше, чем действительная граница, но эти методы гарантируют устойчивость этих в областях (1 и 2). В общем случае метод Ляпунова дает более узкую область достаточных условий, чем метод В.М. Попова. Метод гармонической линеаризации в зависимости от степени выполнения условия фильтра дает приближенное значение области устойчивости, однако, он не гарантирует устойчивость в данной области. Т.е. построенная с помощью метода гармонической линеаризации область устойчивости (3) может быть шире, чем в действительности.
Нанести параметры α, β
1 – граница по методу В.М. Попова
2 – граница по методу Ляпунова
3 Д.Г.У.
Д.Г.У. – действительная граница
устойчивости
Рис. 7.5.1
- Теория автоматического управления нелинейные непрерывные системы
- Глава1. Виды и особенности нелинейных систем
- 1.1. Типовые нелинейные характеристики
- 1.2. Фазовое пространство и фазовая плоскость
- 1 .3. Типы особых точек и фазовые траектории линейных систем
- 1 .4. Особые линии в нелинейных системах
- Глава 2. Фазовая плоскость систем, описываемых уравнениями с неаналитической правой частью
- 2 .1. Исследование системы со скользящим режимом
- 2 .2. Исследование релейной системы
- 2 .3. Многолистное фазовое пространство
- 4 .3. Алгебраический метод определения симметричных автоколебаний и их устойчивости
- 4 .4. Частотный метод определения автоколебательных режимов и их устойчивости (метод Гольдфарба л.С.)
- 4 .5. Учет временного запаздывания в нелинейной системе
- Автоколебательных режимов.
- 2 -Ой метод:
- 4 .7 Несимметричные автоколебания в нелинейных системах.
- 4 .7.1 Гармоническая линеаризация нелинейностей
- 4.7.2 Определение периодических режимов при несимметричных колебаниях
- 6.1. Выбор корректирующих устройств, препятствующих возникновению автоколебаний в нелинейных системах
- 6 .1.1. Выбор линейных последовательных корректирующих устройств
- (Местных обратных связей)
- 6 .2. Системы с переменной структурой (спс)
- 6.3. Исследование системы с переменной структурой методом фазовой плоскости
- 6 .4. Псевдолинейная коррекция
- Глава 7. Исследование устойчивости нелинейных систем.
- 7.1. Устойчивость нелинейных систем. Функции Ляпунова а.М.
- 7.2. Теоремы Ляпунова (прямого метода Ляпунова)
- 7.3. Выбор функций Ляпунова
- 7.4. Частотный критерий абсолютной устойчивости
- 7.5. Сравнение методов анализа устойчивости нелинейных систем
- Глава 8. Исследование устойчивости переходных процессов в нелинейных системах.
- 8.1. Абсолютная устойчивость процессов в нелинейной системе