27. Уравнения прямой в пространстве.
1) Прямая в пространстве может быть задана как линия пересечения двух плоскостей. Так как точка прямой принадлежит каждой из плоскостей, то ее координаты обязаны удовлетворять уравнениям обеих плоскостей, то есть удовлетворять системе из двух уравнений. Итак, если уравнения двух непараллельных плоскостей - и , то прямая, являющаяся их линией пересечения, задается системой уравнений
2) Ненулевой вектор, лежащий на прямой (параллельный ей) называется направляющим вектором прямой. Пусть для прямой известны ее направляющий вектор и точка , лежащая на этой прямой. Пусть - произвольная (текущая) точка прямой . Обозначим через и r радиус-векторы точек и соответственно
Тогда вектор коллинеарен вектору p и, следовательно, , где - некоторое число. Из рис. 11.11 видно, что . Это уравнение называется векторным уравнением прямой или уравнением в векторной форме. При каждом значении параметра мы будем получать новую точку на прямой .
3) Так как - координаты точки , то , , . Из формулы (11.12) получим
Полученная система уравнений называется параметрическими уравнениями прямой. Обратим внимание на то, что по параметрическим уравнениям легко установить направляющий вектор прямой и координаты одной из ее точек. Коэффициенты перед параметром дают координаты направляющего вектора, а свободные члены в правой части -- координаты точки на прямой. Так как направляющий вектор прямой определяется с точностью до умножения на число, отличное от нуля, а в качестве точки можно взять любую точку прямой, то одна и та же прямая может задаваться бесконечным множеством систем параметрических уравнений. Причем разные системы могут быть не похожими друг на друга.
4) Из уравнений (11.13) выразим параметр : . Так как во всех трех соотношениях параметр имеет одно и то же значение, то . Эти уравнения называются каноническими уравнениями прямой.
- 1. Комплексные числа: определение, алгебраическая форма записи, деление.
- 2. Геометрическая интерпретация комплексных чисел. Модуль комплексного числа. Комплексное сопряжение и его свойства.
- 3. Полярные координаты на плоскости. Тригонометрическая форма записи кч.
- 4. Свойства модуля и аргумента кч. Ф-лы Муавра.
- 6. Тригонометрические и гиперболические ф-ции комплексного аргумента.
- 7. Матрицы. Различные виды матриц.
- 8. Решение системы линейных алгебраических уравнений методом Гаусса.
- 9. Линейное пространство. Примеры линейных пространств.
- 10. Линейная зависимость и независимость векторов.
- 11. Размерность линейного пространства. Базис, координаты.
- 12. Определители второго порядка.
- 3.1.1. Определители второго порядка
- 13. Общее определение определителя. Определители третьего порядка.
- 16. Разложение определителя по строке (столбцу).
- 14. Общие свойства определителя.
- 15. Вычисления определителя методом Гаусса. Определитель диагональной и треугольной матриц.
- 18. Проекции геометрического вектора на ось и компонента на оси, их свойства.
- 19. Линейность скалярного произведения и его координатное представление. Угол между векторами.
- 20. Векторное произведение и его основные свойства.
- 21. Координатное представление векторного произведения.
- 23. Линейность векторного произведения.
- 22. Смешанное произведение векторов и его свойства.
- 24. Двойное векторное произведение.
- 25. Плоскость в пространстве (основные виды уравнений).
- 26. Нормальное уравнение плоскости. Расстояние от точки до плоскости.
- 27. Уравнения прямой в пространстве.
- 28. Эллипс и его уравнение в полярных координатах.
- 29. Гипербола и её уравнение в полярных координатах.
- 30. Парабола и её уравнение в полярных координатах.
- 31. Преобразования координат на плоскости: сдвиг, отражение, поворот.
- 32. Приведение уравнения кривой 2-го порядка к каноническому виду.
- 33. Поверхности второго порядка: эллипсоид, гиперболоиды, конус.
- 34. Поверхности 2-го порядка: параболоиды, цилиндры.
- 35. Умножения матриц и его свойства.
- 36. Обратная матрица: определение и основные свойства.
- 37. Вычисление обратной матрицы с помощью алгебраических дополнений.
- 38. Матричные уравнения. Вычисление обратной матрицы методом Гаусса.
- 39. Линейное пространство многочленов. Определитель Вандермонда.
- 40. Деление многочленов. Теорема Безу.
- 41. Кратность корня многочлена: определение, нахождение через производные.
- 42. Основная теорема алгебры. Разложение многочлена на множители (в тч на вещественные).
- 43. Разложение рациональной дроби на простейшие.
- 44. Собственные числа и собственные вектора матрицы.
- 45. Собственные подпространства. Алгебраическая и геометрическая кратность собственного числа.
- 46. Преобразование подобия. Диагонализация матрицы.