Принцип максимина и минимакса, верхняя и нижняя цена игры, седловая точка, оптимальные стратегии, цена игры.
Максимин означает, что нижняя цена игры определяет минимальный выигрыш участника. Минимакс означает, что верхняя цена игры определяет максимальный проигрыш участника
Пусть i – наименьший выигрыш игрока А при выборе им стратегии Аi для всех возможных стратегий игрока В, i = min ij. Тогда гарантированный выигрыш
j=1,n
игрока А при любой стратегии игрока В равен:
= max i = max min ij.
i=1,m i=1,m j=1,n
Число называется нижней ценой игры.
Число = min max ij называется верхней ценой игры. Это гарантированный
j=1,n i=1,m
проигрыш игрока В.
Если ==, то называется чистой ценой (ценой игры), а пара чистых оптимальных стратегий Аi и Bj, для которой ij =, называется седловой точкой матрицы.
Стратегия игрока называется оптимальной, если при многократном повторении игры она обеспечивает игроку максимально возможный средний выигрыш (минимально возможный средний проигрыш).
Yandex.RTB R-A-252273-3
- Постановка транспортной задачи (тз)
- Открытая и закрытая модели.
- Методы построения опорного плана – метод минимального тарифа.
- Метод Фогеля.
- Занятые и свободные клетки.
- Вырожденные и невырожденные планы.
- Метод потенциалов решения тз.
- Оценки опорного плана. Условия оптимальности опорного плана.
- Цикл. Перестановка по циклу.
- Открытая модель тз. Сведения открытой модели к закрытой.
- Фиктивные потребитель и поставщик.
- Дополнительные ограничения в транспортной задаче.
- Постановка задачи многокритериальной оптимизации.
- Доминирование и оптимальность по Парето. Эффективные решения и Парето –оптимальная (Парето –эффективная ) граница.
- Метод построения Парето-оптимальной границы.
- Методы решения задач многокритериальной оптимизации – метод приоритетов.
- Методы решения задач многокритериальной оптимизации – метод обобщенного критерия (метод свертки).
- Методы решения задач многокритериальной оптимизации – метод идеальной точки.
- Основные понятия в игровых моделях: стратегии, матрица выигрышей.
- Принцип максимина и минимакса, верхняя и нижняя цена игры, седловая точка, оптимальные стратегии, цена игры.
- Доминируемые стратегии.
- Решение игр в смешанных стратегиях.
- Графическое решение игр вида 2n и m2.
- Метод динамического программирования. Принцип оптимальности и уравнение Беллмана.
- Задача о распределении средств между предприятиями. Непрерывный случай.
- Задача о распределении средств между предприятиями. Дискретный случай.