Matematicheskoe_modelirovanie ot Nasti Z
5.1 Точность
Точность характеризует приемлемость численной схемы для её практического использования. Оценка точности дискретной схемы представляется весьма сложной задачей, поскольку оказывается практически невозможно отделить ошибки, возникшие вследствие свойств схемы, от ошибок, возникших вследствие прочих факторов (таких как ошибки округления, неточность задания граничных и начальных условий и др.).
Когда говорят о точности дискретной схемы, обычно имеют в виду погрешность аппроксимации производных27. В частности, если погрешность аппроксимации сопоставима со второй степенью шага расчетной сетки, то говорят, что дискретная схема имеет второй порядок точности. Более подробно этот вопрос рассматривался в § 3.
Yandex.RTB R-A-252273-3
Содержание
- 1. Математические модели технической физики
- 2. Физико-математическая классификация дифференциальных уравнений в частных производных
- 3. Дискретизация функций одной переменной
- 4. Дискретизация дифференциальных уравнений в частных производных
- 4.1 Метод конечных разностей
- 4.2 Метод конечных элементов
- 4.3 Метод конечных объемов
- 5. Свойства дискретных схем
- 5.1 Точность
- 5.2 Согласованность
- 5.3 Устойчивость
- 5.4 Сходимость