logo
Методичка Численные методы решения дифур

1.1. Метод Эйлера решения задачи Коши

Рассмотрим дифференциальное уравнение

. (1.1)

Предположим, что функция дифференцируема в некоторой окрестности точки . Задача Коши для дифференциального уравнения (1.1) формулируется следующим образом: найти решение уравнения (1.1), удовлетворяющее условию .

Предположим, что известно решение в точке и требуется найти , где – шаг интегрирования. Согласно формуле Ньютона – Лейбница, очевидным является следующее равенство

.

Запишем его следующим образом

.

Учитывая уравнение (1.1), последнее равенство можно записать в виде

. (1.2)

Интеграл в правой части выражения (1.2) приближенно можно вычислить, используя формулу прямоугольников:

.

Здесь . Отбрасывая члены порядка и полагая , , получаем известную формулу Эйлера

, . (1.3)

Аналогичный результат можно получить и другим способом. Для этого разложим функцию в ряд Тейлора в окрестности точки , в результате получим

(1.4)

или

.

В последнем выражении ограничимся двумя первыми слагаемыми в правой части. В результате получаем

, .

Полагаем, что решение в точке известно. Тогда решение в точке можно найти, используя последнюю формулу и учитывая, что :

(1. )

или

, .

Начинать вычислительный процесс необходимо с точки, определяющей начальные условия, то есть .

Вычислительный процесс, построенный по формуле (1.3), имеет локальную погрешность, пропорциональную . Это означает, что на каждом шаге интегрирования имеет место погрешность порядка . Соответственно, при увеличении времени интегрирования общая погрешность решения дифференциального уравнения возрастает.

Повысить точность получаемых результатов можно, если учитывать большее количество членов разложения функции в ряд Тейлора. Однако, для этого необходимо последовательно дифференцировать правую часть дифференциального уравнения (1.1).

Рассмотрим это на конкретном примере.

Учтем первые четыре члена в ряде Тейлора, в результате получим

.

Как и ранее, полагаем, что решение в точке найдено. Выбирая достаточно малый шаг , находим решение в следующей точке

.

Для реализации этой формулы необходимо знать производные искомого решения , , . Первая производная может быть найдена из дифференциального уравнения (1.1). Это есть его правая часть, . Вторую и третью производные решения – , – можно найти, дифференцируя правую часть уравнения (1.1), рассматривая ее, как сложную функцию. Соответственно имеем

,

, (1.5)

Как видим, такой путь повышения локальной точности решения дифференциального уравнения (1.1) является трудоемким.

Точность вычислений можно повысить при заданном шаге интегрирования и другими способами. В формуле (1.2) интеграл вычисляется по формуле прямоугольников. Вычислим этот интеграл, используя формулу трапеций. В результате будем иметь

.

По формуле Тейлора, справедливо равенство

.

Отбрасывая в последнем выражении члены порядка , и полагая

(1.6)

Здесь .

Погрешность, которая обеспечивается этими формулами, имеет порядок . Формулы (1.6) называются формулами Эйлера – Коши.