43.Описанные многогранники.
Выпуклый многогранник называется описанным, если все его грани касаются некоторой сферы. Эта сфера называется вписанной для данного многогранника.
Теорема о вписанной сфере треугольной пирамиды.
Треугольная пирамида имеет единственную вписанную сферу.
Доказательство
В треугольной пирамиде ABCD проведем биссекторные плоскости ее двугранных углов с ребрами AB, AC и DC. Эти плоскости имеют единственную общую точку Q, что доказывается аналогично предыдущей теореме. Понятно, что точка Q равноудалена от всех граней пирамиды. Таким образом, установлено существование вписанной сферы, единственность которой доказывается опять-таки аналогично. |
Теорема. Если сфера вписана в многогранник, то объем этого многогранника равен где – площадь полной поверхности многогранника, r – радиус вписанной сферы.
Доказательство
Соединим центр вписанной сферы со всеми вершинами многогранника. При этом многогранник делится на несколько пирамид (их количество равно количеству граней многогранника). Высота каждой из этих пирамид равна r, а площадь основания – это площадь некоторой грани многогранника, поэтому
(m – количество граней),
что и требовалось доказать. |
Поскольку центр вписанной сферы одинаково удален от всех граней многогранника, он лежит на пересечении биссекторных плоскостей всех двугранных углов многогранника.
Теорема.
В правильную n-угольную пирамиду можно вписать сферу.
Доказательство
На чертеже 5.6.2 изображена n-я часть правильной n-угольной пирамиды, где PC – апофема боковой грани PAB; CO' – биссектриса угла PCO. Ясно, что точка O' одинаково удалена от всех граней пирамиды и является центром вписанной сферы: OO' = r – радиус вписанной сферы. Из ΔO'OC имеем: O'O = r = OC tg (α/2), или r = r1 tg (α/2), где r1 – радиус окружности, вписанной в основание пирамиды, α – двугранный угол при ребре основания.
|
Общие замечания о положении центра шара.
1. Центр шара, вписанного в многогранник, лежит в точке пересечения биссекторных плоскостей всех двугранных углов многогранника. Он расположен только внутри многогранника.
2. Центр шара, описанного около многогранника, лежит в точке пересечения плоскостей, перпендикулярных ко всем ребрам многогранника и проходящих через их середины. Он может быть расположен внутри, на поверхности и вне многогранника.
- 1. Обобщенные приемы познавательной деятельности процесса поиска решения задач: функциональный подход.
- 2. Обобщенные приемы познавательной деятельности процесса поиска решения задач: динамизация геометрических объектов на плоскости
- 3. Обобщенные приемы познавательной деятельности процесса поиска решения задач: динамизация геометрических объектов в пространстве
- Установление области определения.
- Установление области изменения при заданной области определения.
- Установление способа движения по множеству значений, при указанном способе движения по области определения.
- Обобщенные приемы познавательной деятельности процесса поиска решения задач: аналогия, обобщение, конкретизация.
- 5. Обобщенные приемы познавательной деятельности процесса поиска решения задач: Метод математической индукции
- 6 . Обобщенные приемы познавательной деятельности процесса поиска решения задач: использование классических неравенств.
- 7.Функциональный подход в поиске решений задач: использование монотонности.
- 8.Функциональный подход в поиске решений задач: ограниченность (метод крайнего).
- 9.Функциональный подход в поиске решений задач: четности.
- 10.Функциональный подход в поиске решений задач: решение задач, содержащих целую и дробную часть числа.
- Виды задач
- Методы решения
- 12. Олимпиадные задачи. Основы теории чисел: простые числа, алгоритм Евклида.
- 13.Олимпиадные задачи. Инварианты. Полуинварианты.
- 14. Олимпиадные задачи, решаемые с использованием принципа Дирихле.
- 15. Комбинаторные задачи, приемы и методы их решения
- 16. Задачи на раскраски, укладки, замощения.
- 17. Диофантовы уравнения.
- 18. Логические задачи, решаемые с помощью графов
- 19. Логические задачи, решаемые с помощью составления таблиц истинности.
- 20. Олимпиадные задачи с геометрическим содержанием
- 21. Задачи - игры
- 22. Олимпиадные задачи с параметрами. Методы их решения.
- 23. Применение векторов к решению аффинных задач в пространстве.
- 24.Применение векторов к решению метрических задач в пространстве.
- 25.Векторно-координатный метод определения угла между прямыми.
- Алгоритм векторно-координатного метода:
- 26.Векторно-координатный метод определения угла между прямой и плоскостью.
- 27.Векторно-координатный метод определения угла между двумя плоскостями
- Алгоритм векторно-координатного метода:
- Решение:
- 28.Векторно-координатный метод определения расстояния между фигурами.
- 29. Задачи на отыскание наибольшего и наименьшего значений геометрической величины.
- 30.Цилиндр. Решение задач на нахождение элементов цилиндра.
- 31.Конус. Решение задач на нахождение элементов конуса.
- 32.Усеченный конус. Решение задач на нахождение элементов конуса
- 33.Шар и сфера. Решение задач на нахождение элементов шара и сферы.
- 34. Части сферы и шара. Решение задач на нахождение элементов частей сферы и шара.
- 35.Комбинация шара с цилиндром.
- 36.Комбинация шара с конусом и усеченным конусом.
- 37.Комбинация конуса и усеченного конуса.
- 38.Взаимное расположение двух сфер.
- 43.Описанные многогранники.
- 44.Вписанные многогранники.