logo search
Вероятностные процессы и математическая статистика в автоматизированных системах

2.1 Построение модели плана II порядка

Для построения плана II порядка можно использовать следующую модель:

(2)

Для этого необходимо провести эксперимент так, чтобы каждый фактор варьировался на трех уровнях. Простейшим решением этой задачи является план типа 3k. Реализация этого плана для k>3 требует большого числа опытов.

Для построения модели второго порядка обычно используют ортогональный план первого порядка в качестве ядра, на котором достраивается план второго порядка, поэтому такие планы называются композиционными и соответствуют шаговой идее построения планов.

Для удобства работы с приведенной моделью II порядка, с помощью обозначений (3) преобразуем ее к виду (2):

(3)

(2)

Задача заключается в том, чтобы по результатам наблюдений определить значения коэффициентов bi, дисперсии и доверительные границы для них, а также определить их значимость.

Согласно МНК, для нахождения коэффициентов bi, необходимо минимизировать функцию:

(4)

где N - количество опытов;

xui -значение i-й переменной в u-м опыте;

yu - значение экспериментальных y в u-м опыте;

Из условия минимизации функции ss, можно получить систему нормальных уравнений МНК:

(5)

Представив все результаты в матричной форме, получим:

, , , (6)

где X - матрица условий эксперимента; Y - матрица результатов опытов; B - матрица коэффициентов.

Умножив транспонированную матрицу X на матрицу X, получим матрицу системы нормальных уравнений, которая называется информационной матрицей Фишера (матрицей моментов):

(7)

Умножив транспонированную матрицу X на матрицу Y, получим:

(8)

Используя данные обозначения, систему нормальных уравнений можно записать в матричной форме:

(9)

Обозначая обратную матрицу моментов как:

(10)

получим выражение для матрицы коэффициентов:

(11)

Все статистические свойства коэффициентов линии регрессии определяется матрицей дисперсий ковариаций.

(12)

где cov(bi, bj) - ковариации коэффициентов bi, и bj;

S2(bi) - дисперсия коэффициента bi;

S2(y) - дисперсия опыта.

Дисперсию опыта можно определить по формулам:

(13)

(14)

где m - количество параллельных опытов.

Если параллельные опыты не проводятся, то для оценки дисперсии опыта ставятся эксперименты в центре плана. Тогда дисперсия определяется по формуле:

(15)

где - количество опытов в центре плана.

Так как ядро плана ортогонально, то для сохранения ортогональности композиционного плана необходимо при построении матрицы планирования обеспечить условия:

Величина зависит от фактора и от плеча d:

;

Для k=3 ядро =15, =11/15=0.7303, d=1.2154