Винтовые поверхности
Винтовой называют поверхность, образованную винтовым движением образующей. Под винтовым движением понимается совокупность двух движений: поступательного параллельно некоторой оси, и вращательного, вокруг той же оси.
Рис.12 Винтовая поверхность
При этом поступательное и угловое перемещение находятся в определенной зависимости
?h=k?v,
где ?h - линейное перемещение за время ?t, ?v - угловое перемещение за то же время, k - коэффициент пропорциональности. Если k=Const, то шаг поверхности постоянный.
Геометрическая часть определителя винтовой поверхности ни чем не отличается от поверхности вращения и состоит из двух линий: образующей m, и оси i.
Алгоритмическая часть:
1. На образующей m выделяют ряд точек А, В, С, …
2. Строят винтовые линии заданного шага и направления, по которым перемещаются заданные точки.
Траектория движения точки называется винтовой линией. Винтовая линия постоянного радиуса R называется гелисой, или цилиндрической винтовой линией. Величина подъема винтовой линии за один оборот называется шагом. Очерком поверхности является линия, огибающая положения образующей линии.
Геликоид - это поверхность, при котором винтовое движение совершает прямая линия.
Различают архимедову, эвольвентную и конволютную винтовые поверхности.
Архимедова винтовая поверхность - привинтовом движении прямой, пересекающей ось винта. Сечение такой поверхности плоскостью, перпендикулярной ее оси, дает спираль Архимеда.