омм
14.Побудова опорного плану задачі лінійного програмування, перехід до іншого опорного плану.
Опорний план ЗЛП будується за законами методу, яким розв»язується дана задача (тобто, якщо це симплекс метод, то будуємо симплекс таблицю з базисними векторами, якщо це транспортна задача – то опорний план можна будувати за методом пн.-західного кута чи методом найменшої вартості або подвійної переваги). Далі опорний план перевіряється на оптимальність і якщо він не задовольняє умови оптимальності, від нього переходять до нового опорного плану, виконавши певний алгоритм дій, частіше всього зі змінною, яка найбільше не задовольняє умови оптимальності
Содержание
- Принципи моделювання соціально-економічних систем і процесів.
- Сутність економіко-математичної моделі.
- Необхідність використання математичного моделювання економічних процесів
- 7.Способи перевырки адекватносты економыко-математичних моделей
- 8.Поняття адаптацыъ та адаптивних систем
- 9.Сутність оптимізаційних моделей. Приклади економічних задач математичного програмування
- 10. Загальна постановка задачі лінійного програмування. Приклади економічних задач лінійного програмування.
- 11. Модель задачі лінійного програмування в розгорнутому і скороченому вигляді, а також в матричній і векторній формах.
- 12. Властивості розв’язків задачі лінійного програмування. Геометрична інтерпретація задач лінійного програмування.
- 13.Означення планів задачі лінійного програмування (допустимий, опорний, оптимальний).
- 14.Побудова опорного плану задачі лінійного програмування, перехід до іншого опорного плану.
- 15.Теорема про оптимальність розв’язку задачі лінійного програмування симплекс-методом.
- 16. Знаходженння розв’язку задачі лінійного програмування. Алгоритм симплексного методу.
- 17. Симплексний метод із штучним базисом. Ознака оптимальності плану із штучним базисом.
- 18.Двоїста задача. Правила побудови двоїстої задачі. Симетричні й несиметричні двоїсті задачі.
- 19. Економічний зміст двоїстої задачі й двоїстих оцінок.
- 20. Теореми двоїстості, їх економічна інтерпретація.
- 21.Застосування теорем двоїстості в розв’язуванні задач лінійного програмування.
- 23. Аналіз обмежень дефіцитних і недефіцитних ресурсів
- 24. Аналіз коефіцієнтів цільової функції задач лінійного програмування.
- 26. Геометрична інтерпретація задачі цілочислового програмування.
- 27. Метод Гоморі
- 28. Постановка задачі нелінійного програмування, математична модель. Геометрична інтерпретація.
- 29. Графічний метод розв’язування задач нелінійного програмування.
- 30.Метод множників Лагранжа. Теорема Лагранжа. Алгоритм розв’язування задачі на безумовний екстремум.
- 1. Принципи моделювання соціально-економічних систем і процесів.
- 2. Сутність економіко-математичної моделі.