28. Постановка задачі нелінійного програмування, математична модель. Геометрична інтерпретація.
Для ефективного управління народним господарством в цілому, його галузями і окремими об’єктами господарювання потрібне застосування нелінійних економіко-математичних моделей та методів. Зауважимо, що сучасний рівень розвитку комп’ютерної техніки і методів математичного моделювання створює передумови для застосування нелінійних методів, а це може суттєво підвищити якість розроблюваних планів, надійність та ефективність рішень, які приймаються. Загальна задача математичного програмування формулюється так: знайти такі значення змінних xj , щоб цільова функція набувала екстремального (максимального чи мінімального) значення:
(8.1)
за умов:
( ); (8.2)
. (8.3)
Якщо всі функції та , є лінійними, то це задача лінійного програмування, інакше (якщо хоча б одна з функцій є нелінійною) маємо задачу нелінійного програмування.
Геометрично цільова функція (8.1) визначає деяку поверхню, а обмеження (8.2)—(8.3) — допустиму підмножину n-вимірного евклідового простору. Знаходження оптимального розв’язку задачі нелінійного програмування зводиться до відшукання точки з допустимої підмножини, в якій досягається поверхня найвищого (найнижчого) рівня.
Якщо цільова функція неперервна, а допустима множина розв’язків замкнена, непуста і обмежена, то глобальний максимум (мінімум) задачі існує.
Найпростішими для розв’язування є задачі нелінійного програмування, що містять систему лінійних обмежень та нелінійну цільову функцію. В цьому разі область допустимих розв’язків є опуклою, непустою, замкненою, тобто обмеженою.
Розглянемо приклад геометричного способу розв’язування задачі нелінійного програмування.
- Принципи моделювання соціально-економічних систем і процесів.
- Сутність економіко-математичної моделі.
- Необхідність використання математичного моделювання економічних процесів
- 7.Способи перевырки адекватносты економыко-математичних моделей
- 8.Поняття адаптацыъ та адаптивних систем
- 9.Сутність оптимізаційних моделей. Приклади економічних задач математичного програмування
- 10. Загальна постановка задачі лінійного програмування. Приклади економічних задач лінійного програмування.
- 11. Модель задачі лінійного програмування в розгорнутому і скороченому вигляді, а також в матричній і векторній формах.
- 12. Властивості розв’язків задачі лінійного програмування. Геометрична інтерпретація задач лінійного програмування.
- 13.Означення планів задачі лінійного програмування (допустимий, опорний, оптимальний).
- 14.Побудова опорного плану задачі лінійного програмування, перехід до іншого опорного плану.
- 15.Теорема про оптимальність розв’язку задачі лінійного програмування симплекс-методом.
- 16. Знаходженння розв’язку задачі лінійного програмування. Алгоритм симплексного методу.
- 17. Симплексний метод із штучним базисом. Ознака оптимальності плану із штучним базисом.
- 18.Двоїста задача. Правила побудови двоїстої задачі. Симетричні й несиметричні двоїсті задачі.
- 19. Економічний зміст двоїстої задачі й двоїстих оцінок.
- 20. Теореми двоїстості, їх економічна інтерпретація.
- 21.Застосування теорем двоїстості в розв’язуванні задач лінійного програмування.
- 23. Аналіз обмежень дефіцитних і недефіцитних ресурсів
- 24. Аналіз коефіцієнтів цільової функції задач лінійного програмування.
- 26. Геометрична інтерпретація задачі цілочислового програмування.
- 27. Метод Гоморі
- 28. Постановка задачі нелінійного програмування, математична модель. Геометрична інтерпретація.
- 29. Графічний метод розв’язування задач нелінійного програмування.
- 30.Метод множників Лагранжа. Теорема Лагранжа. Алгоритм розв’язування задачі на безумовний екстремум.
- 1. Принципи моделювання соціально-економічних систем і процесів.
- 2. Сутність економіко-математичної моделі.