20. Теореми двоїстості, їх економічна інтерпретація.
Між прямою та двоїстою задачами лінійного програмування існує тісний взаємозв’язок, який випливає з наведених далі теорем.
Перша теорема двоїстості. Якщо одна з пари двоїстих задач має оптимальний план, то інша задача також має розв’язок, причому значення цільових функцій для оптимальних планів дорівнюють одне одному, тобто max Z = min F, і навпаки.
Якщо ж цільова функція однієї з пари двоїстих задач не обмежена, то друга задача взагалі не має розв’язків.
Якщо пряма задача лінійного програмування має оптимальний план Х *, визначений симплекс-методом, то оптимальний план двоїстої задачі Y * визначається зі співвідношення
,
де — вектор-рядок, що складається з коефіцієнтів цільової функції прямої задачі при змінних, які є базисними в оптимальному плані; — матриця, обернена до матриці D, складеної з базисних векторів оптимального плану, компоненти яких узято з початкового опорного плану задачі. Обернена матриця завжди міститься в останній симплекс-таблиці в тих стовпчиках, де в першій таблиці містилася одинична матриця.
За допомогою зазначеного співвідношення під час визначення оптимального плану однієї з пари двоїстих задач лінійного програмування знаходять розв’язок іншої задачі.
Друга теорема двоїстості. Якщо в результаті підстановки оптимального плану прямої задачі в систему обмежень цієї задачі і-те обмеження виконується як строга нерівність, то відповідний і-й компонент оптимального плану двоїстої задачі дорівнює нулю.
Якщо і-й компонент оптимального плану двоїстої задачі додатний, то відповідне і-те обмеження прямої задачі виконується для оптимального плану як рівняння.
Третя теорема двоїстості. Двоїста оцінка характеризує приріст цільової функції, який зумовлений малими змінами вільного члена відповідного обмеження.
Економічний зміст третьої теореми двоїстості полягає в тому, що відповідна додатна оцінка показує зростання значення цільової функції прямої задачі, якщо запас відповідного дефіцитного ресурсу збільшується на одну одиницю.
- Принципи моделювання соціально-економічних систем і процесів.
- Сутність економіко-математичної моделі.
- Необхідність використання математичного моделювання економічних процесів
- 7.Способи перевырки адекватносты економыко-математичних моделей
- 8.Поняття адаптацыъ та адаптивних систем
- 9.Сутність оптимізаційних моделей. Приклади економічних задач математичного програмування
- 10. Загальна постановка задачі лінійного програмування. Приклади економічних задач лінійного програмування.
- 11. Модель задачі лінійного програмування в розгорнутому і скороченому вигляді, а також в матричній і векторній формах.
- 12. Властивості розв’язків задачі лінійного програмування. Геометрична інтерпретація задач лінійного програмування.
- 13.Означення планів задачі лінійного програмування (допустимий, опорний, оптимальний).
- 14.Побудова опорного плану задачі лінійного програмування, перехід до іншого опорного плану.
- 15.Теорема про оптимальність розв’язку задачі лінійного програмування симплекс-методом.
- 16. Знаходженння розв’язку задачі лінійного програмування. Алгоритм симплексного методу.
- 17. Симплексний метод із штучним базисом. Ознака оптимальності плану із штучним базисом.
- 18.Двоїста задача. Правила побудови двоїстої задачі. Симетричні й несиметричні двоїсті задачі.
- 19. Економічний зміст двоїстої задачі й двоїстих оцінок.
- 20. Теореми двоїстості, їх економічна інтерпретація.
- 21.Застосування теорем двоїстості в розв’язуванні задач лінійного програмування.
- 23. Аналіз обмежень дефіцитних і недефіцитних ресурсів
- 24. Аналіз коефіцієнтів цільової функції задач лінійного програмування.
- 26. Геометрична інтерпретація задачі цілочислового програмування.
- 27. Метод Гоморі
- 28. Постановка задачі нелінійного програмування, математична модель. Геометрична інтерпретація.
- 29. Графічний метод розв’язування задач нелінійного програмування.
- 30.Метод множників Лагранжа. Теорема Лагранжа. Алгоритм розв’язування задачі на безумовний екстремум.
- 1. Принципи моделювання соціально-економічних систем і процесів.
- 2. Сутність економіко-математичної моделі.