logo search
омм

20. Теореми двоїстості, їх економічна інтерпретація.

Між прямою та двоїстою задачами лінійного програмування існує тісний взаємозв’язок, який випливає з наведених далі теорем.

Перша теорема двоїстості. Якщо одна з пари двоїстих задач має оптимальний план, то інша задача також має розв’язок, причому значення цільових функцій для оптимальних планів дорівнюють одне одному, тобто max Z = min F, і навпаки.

Якщо ж цільова функція однієї з пари двоїстих задач не обмежена, то друга задача взагалі не має розв’язків.

Якщо пряма задача лінійного програмування має оптимальний план Х *, визначений симплекс-методом, то оптимальний план двоїстої задачі * визначається зі співвідношення

,

де — вектор-рядок, що складається з коефіцієнтів цільової функції прямої задачі при змінних, які є базисними в оптимальному плані; — матриця, обернена до матриці D, складеної з базисних векторів оптимального плану, компоненти яких узято з початкового опорного плану задачі. Обернена матриця завжди міститься в останній симплекс-таблиці в тих стовпчиках, де в першій таблиці містилася одинична матриця.

За допомогою зазначеного співвідношення під час визначення оптимального плану однієї з пари двоїстих задач лінійного програмування знаходять розв’язок іншої задачі.

Друга теорема двоїстості. Якщо в результаті підстановки оптимального плану прямої задачі в систему обмежень цієї задачі і-те обмеження виконується як строга нерівність, то відповідний і-й компонент оптимального плану двоїстої задачі дорівнює нулю.

Якщо і-й компонент оптимального плану двоїстої задачі додат­ний, то відповідне і-те обмеження прямої задачі виконується для оптимального плану як рівняння.

Третя теорема двоїстості. Двоїста оцінка характеризує приріст цільової функції, який зумовлений малими змінами вільного члена відповідного обмеження.

Економічний зміст третьої теореми двоїстості полягає в тому, що відповідна додатна оцінка показує зростання значення цільової функції прямої задачі, якщо запас відповідного дефіцитного ресурсу збільшується на одну одиницю.