3.1.5. Метод парабол
Рассмотренный метод секущих можно интерпретировать как метод, в котором на каждой итерации исходная функция аппроксимируется линейной функцией (секущей), построенной по двум точкам, принадлежащим f(x). Развивая далее идеи аппроксимации, можно для построения итерационных формул использовать информацию о функции в нескольких точках, предшествующих точке В методе парабол по трем последовательным приближениямстроится многочлен второй степени (парабола), приближающий исходную функцию. Иначе этот метод называют МЕТОДОМ МЮЛЛЕРА или методом КВАДРАТИЧНОЙ ИНТЕРПОЛЯЦИИ. За новое приближение берется обычно ближайший ккорень соответствующего квадратного уравнения. Геометрическая интерпретация метода парабол дана на рис.10.
В качестве выбирается тот из корней квадратного уравнения, для которого величинанаименьшая. Доказывается, что погрешность метода определяется соотношением
где p = 1,839.
Рисунок 10 – Геометрическая интерпретация метода парабол
Это означает, что, несмотря на привлечение дополнительной информации о функции, метод парабол имеет порядок сходимости, лишь немного превышающий порядок сходимости метода секущих. Вместе с тем возникают задачи решения квадратного уравнения, выбора одного из двух корней многочлена и, самое важное, определение области гарантированной сходимости метода. Если три приближения для построения многочлена выбраны далеко от корня и содержат погрешности, то возможно самое неожиданное поведение решения.
Отметим, что метод парабол успешно применяется для отыскания корней многочленов, в том числе комплексных; при этом метод обладает тем замечательным свойством, что начальное приближение может быть действительным. Метод парабол является трехшаговым методом.
Лекция № 8
- Министерство образования и науки Российской Федерации
- Оглавление
- Лекция № 1
- 1. Особенности математических вычислений, реализуемых на эвм: теоретические основы численных методов: погрешности вычислений
- 1.1. Дискретизация
- 1.3. Погрешность
- 1.4. Устойчивость и сложность алгоритма (по памяти, по времени)
- 2.1. Основные понятия линейной алгебры. Классификация методов решения
- 2.2. Метод исключения Гаусса. Вычисление определителя и обратной матрицы методом исключения
- 2.3. Численные методы решения линейных уравнений
- 2.3.1. Метод прогонки
- 2.3.2. Итерационные методы
- 3.1. Решение нелинейных уравнений
- 3.1.1. Метод половинного деления
- 3.1.2. Метод простой итерации
- 3.1.3. Метод Ньютона
- 3.1.4. Метод секущих
- 3.1.5. Метод парабол
- 3.2. Методы решения нелинейных систем уравнений
- 4.1.Функция и способы ее задания
- 4.2 Основные понятия теории приближения функций
- 4.3 Интерполяция функций
- 4.3.1 Интерполирование с помощью многочленов
- 4.3.2 Погрешность интерполяционных методов
- 4.3.3 Интерполяционный многочлен Лагранжа
- 4.3.4 Конечные разности
- 4.3.5 Интерполяционные многочлены Стирлинга и Бесселя
- 4.3.6 Интерполяционные многочлены Ньютона
- 4.3.7 Разделенные разности
- 4.3.8 Интерполяционный многочлен Ньютона для произвольной сетки узлов
- 4.3.9 Итерационно-интерполяционный метод Эйткина
- 4.3.10 Интерполирование с кратными узлами
- 4.4 Равномерное приближение функций. Приближение методом наименьших квадратов
- 5.1. Численное дифференцирование
- 5.2. Формулы численного интегрирования
- 5.3. Решение обыкновенных дифференциальных уравнений. Метод конечных разностей для численного решения дифференциальных уравнений
- Интегрирование дифференциальных уравнений с помощью степенных рядов
- 5.4. Преобразование Фурье
- 5.4.1 Применения преобразования Фурье
- 5.4.2 Разновидности преобразования Фурье Непрерывное преобразование Фурье
- Ряды Фурье
- Дискретное преобразование Фурье
- Оконное преобразование Фурье
- Другие варианты
- 5.4.3 Интерпретация в терминах времени и частоты
- 5.4.4 Таблица важных преобразований Фурье
- Библиографический список