logo
ЛекцииВМ(NEW)

Другие варианты

Дискретное преобразование Фурье является частным случаем (и иногда применяется для аппроксимации) дискретного во времени преобразования Фурье (DTFT), в котором xk определены на дискретных, но бесконечных областях, и таким образом спектр является непрерывным и периодическим. Дискретное во времени преобразование Фурье является по существу обратным для рядов Фурье.

Эти разновидности преобразования Фурье могут быть обобщены на преобразования Фурье произвольных локально сжатых абелевых топологических групп, которые изучаются в гармоническом анализе; они преобразуют группу в ее дуальную группу. Эта трактовка также позволяет сформулировать теорему свёртки, которая устанавливает связь между преобразованиями Фурье и свёртками. См. также дуализм Понтрягина для обобщенных обоснований преобразования Фурье.

Yandex.RTB R-A-252273-3
Yandex.RTB R-A-252273-4