Алгебраический критерий устойчивости (Рауса-Гурвица)
Для оценки устойчивости по этому критерию необходимо из коэффициентов характеристического уравнения составить определитель Гурвица по следующим правилам:
-
по главной диагонали выписываются все коэффициенты характеристического уравнения от а1 до аn в порядке возрастания индексов;
-
столбцы определителя заполняются коэффициентами от главной диагонали вниз по убывающим, а вверх - по возрастающим индексам;
-
места коэффициентов, индексы которых больше n или меньше нуля заполняются нулями.
Для примера составим определитель Гурвица, для системы 5-го порядка.
Характеристическое уравнение системы имеет вид где все коэффициенты строго больше нуля. Получим матрицу n.
Для того чтобы все корни характеристического уравнения имели отрицательные либо вещественные части и система была устойчивой необходимо и достаточно, чтобы все коэффициенты и все диагональные определители определителя Гурвица были строго больше нуля.
Для устойчивости системы 5-го порядка необходимо выполнение условий
аk>0, k=0,1,2,...5;
2 =а1а2 - а0а3>0;
3=а32 - а12а4>0; 4 =а43 -а2а52 + а0а5(а1а4 - а0а5)>0; 5 =а54>0.
Так как при выполнении необходимого условия устойчивости всегда аn>0, то об устойчивости системы можно судить по определителям до n-1 включительно. Доказано, что если n-1=0, то система находится на колебательной границе устойчивости, т.е. имеет пару чисто мнимых корней. Из условия n-1=0 можно определить критические значения параметров системы, при которых она выходит на границу устойчивости.
- Понятие управления. Автоматическое и автоматизированное управление. Классификация систем автоматического управления (сау).
- Функциональные схемы сау: разомкнутые и замкнутые сау. Обратная связь и ее типы.
- Структурные схемы систем и их эквивалентные преобразования.
- Формула Мейсена
- Временные характеристики систем. Переходная характеристика.
- Частотные характеристики систем.
- Логарифмические характеристики.
- Передаточная функция: определение и типы
- Типовые звенья и их характеристики
- Основные законы регулирования.
- Необходимое и достаточное условие устойчивости линейных систем
- Алгебраический критерий устойчивости (Рауса-Гурвица)
- Критерий устойчивости Михайлова.
- Критерий Найквиста.
- Точность систем автоматического управления в типовых режимах.
- Понятие переходного процесса. Оценка качества системы по переходной характеристике.
- Методы построения переходного процесса.
- Прямые и косвенные методы исследования качества управления.
- Основные методы повышения точности систем
- Теория инвариантности и комбинированное управление (далее ку)
- Корректирующие средства
- Основные принципы повышения запаса устойчивости систем
- Система с переменными параметрами (далее спр). Нормальная и сопряженная весовые функции
- Параметрическая передаточная функция (далее ппф) нестационарной системы
- Методы анализа нестационарных систем
- Системы с запаздыванием
- Нелинейные системы, общие понятия, особенности динамики, типовые нелинейности.
- Метод малых отклонений. Первый метод Ляпунова. Типы особых точек
- Метод интегрированной аппроксимации (на примере системы с реле)
- Второй метод Ляпунова
- Частотный критерий устойчивости в. М. Попова.
- Методы малого параметра (аналитические методы)
- Метод гармонического баланса.
- Преобразование случайных сигналов линейными системами.
- Преобразование случайных сигналов нелинейными системами.
- Статистически оптимальные параметры линейных систем.
- Статистически оптимальные системы. Уравнение Винера-Хопфа (на примере не реализуемой системы).
- Решение уравнения Винера-Хопфа (для физически реализуемой системы.) Решение уравнения Винера-Хопфа для физически реализуемой системы.
- Преобразование случайных сигналов безынерционными нелинейными системами.
- Метод статистической линеаризации.
- Понятие об оптимальных системах. Примеры постановки задач оптимального управления.
- Синтез управляющего устройства оптимальной по быстродействию системы методом фазовой плоскости.
- Вариационное исчисление и основные задачи вариационного исчисления. Перечислите основные задачи вариационного исчисления?
- Основная задача минимизации. Случай закрепленных конечных точек.
- Случай подвижных конечных точек. Задача перехвата.
- Вариационное исчисление в задачах оптимального управления. Управление по минимуму интегральной оценки.
- Учет физических ограничений и множители Лагранжа (на примере)
- Обобщенная задача оптимального управления.
- Принцип максимума Понтрягина.
- Метод динамического программирования Беллмана.