Статистически оптимальные системы. Уравнение Винера-Хопфа (на примере не реализуемой системы).
На выходе сигнал с помехой Y(t)=S(t)+n(t), где S(t) – полезный сигнал, n(t) – помеха, и известны характеристики сигнала и шума – плотность распределения либо спектральная плотность. Необходимо из класса систем выбрать систему, обеспечивающую min погрешность ε. Если ε статистическая, то мы говорим о статистически оптимальной системе.
Задача построении:
-критерий оптимальности средне-квадратическое значение погрешности. Если ε – стационарный и эргодический процесс, то:
- Идеальная и синтезируемая системы – системы с постоянными коэффициентами
- Все случайные процессы стационарные и эргодические
- X(t) на выходе линейной системы в момент времени t зависит как от текущей Y(t), так и от предыдущей (бесконечная память)
Уравнение Винера-Хопфа (на примере не реализуемой системы)
- оно получается из при нахождении g(t) g(t) – она находится так чтобы минимизировать , g(t)-функция веса физически не реализуемой системы не должна учитывать при t<0, тогда
- Понятие управления. Автоматическое и автоматизированное управление. Классификация систем автоматического управления (сау).
- Функциональные схемы сау: разомкнутые и замкнутые сау. Обратная связь и ее типы.
- Структурные схемы систем и их эквивалентные преобразования.
- Формула Мейсена
- Временные характеристики систем. Переходная характеристика.
- Частотные характеристики систем.
- Логарифмические характеристики.
- Передаточная функция: определение и типы
- Типовые звенья и их характеристики
- Основные законы регулирования.
- Необходимое и достаточное условие устойчивости линейных систем
- Алгебраический критерий устойчивости (Рауса-Гурвица)
- Критерий устойчивости Михайлова.
- Критерий Найквиста.
- Точность систем автоматического управления в типовых режимах.
- Понятие переходного процесса. Оценка качества системы по переходной характеристике.
- Методы построения переходного процесса.
- Прямые и косвенные методы исследования качества управления.
- Основные методы повышения точности систем
- Теория инвариантности и комбинированное управление (далее ку)
- Корректирующие средства
- Основные принципы повышения запаса устойчивости систем
- Система с переменными параметрами (далее спр). Нормальная и сопряженная весовые функции
- Параметрическая передаточная функция (далее ппф) нестационарной системы
- Методы анализа нестационарных систем
- Системы с запаздыванием
- Нелинейные системы, общие понятия, особенности динамики, типовые нелинейности.
- Метод малых отклонений. Первый метод Ляпунова. Типы особых точек
- Метод интегрированной аппроксимации (на примере системы с реле)
- Второй метод Ляпунова
- Частотный критерий устойчивости в. М. Попова.
- Методы малого параметра (аналитические методы)
- Метод гармонического баланса.
- Преобразование случайных сигналов линейными системами.
- Преобразование случайных сигналов нелинейными системами.
- Статистически оптимальные параметры линейных систем.
- Статистически оптимальные системы. Уравнение Винера-Хопфа (на примере не реализуемой системы).
- Решение уравнения Винера-Хопфа (для физически реализуемой системы.) Решение уравнения Винера-Хопфа для физически реализуемой системы.
- Преобразование случайных сигналов безынерционными нелинейными системами.
- Метод статистической линеаризации.
- Понятие об оптимальных системах. Примеры постановки задач оптимального управления.
- Синтез управляющего устройства оптимальной по быстродействию системы методом фазовой плоскости.
- Вариационное исчисление и основные задачи вариационного исчисления. Перечислите основные задачи вариационного исчисления?
- Основная задача минимизации. Случай закрепленных конечных точек.
- Случай подвижных конечных точек. Задача перехвата.
- Вариационное исчисление в задачах оптимального управления. Управление по минимуму интегральной оценки.
- Учет физических ограничений и множители Лагранжа (на примере)
- Обобщенная задача оптимального управления.
- Принцип максимума Понтрягина.
- Метод динамического программирования Беллмана.