Частотный критерий устойчивости в. М. Попова.
Абсолютная устойчивость – это устойчивость в целом нелинейной системы при задании ее нелинейностей принадлежностью к определенному классу. Типичным случаем такого задания является задание статической нелинейной характеристики тем, что она должна находиться в пределах определенного угла между осью абсцисс и некоторой прямой, как показано на рис. характеристика, заданная в угле (0,k)
Критерий абсолютной устойчивости В.М.Попова относится к системам, которые можно представить в виде соединения линейной части с передаточной функцией Wл(s) и безынерционного нелинейного звена f(x). Wл*(s)
Характеристика нелинейного звена является однозначной и лежит в угле (0,k). Минус на входе Wл(s) показывает, что обратная связь в системе отрицательна. Для суждения об устойчивости по этому критерию используется преобразованная амплитудно-фазовая частотная характеристика Wл(j)=ReWл(j)+ jIm Wл(j)
Эта характеристика получается из АФЧХ Wл(j) линейной части системы путем умножения ординат последней на текущее значение частоты . Нелинейная система абсолютно устойчива, если при устойчивой линейной части системы через точку (-1/k, j0) можно провести хотя бы одну прямую линию так, чтобы вся характеристика Wл*(j) находилась от нее справа. Такая линия называется линией Попова. На рисунке показан случай, когда имеет место абсолютная устойчивость.
Критерий В.М.Попова является достаточным, т.е. он дает часть области абсолютной устойчивости и его невыполнение может не означать отсутствия абсолютной устойчивости в какой – либо другой области.
- Понятие управления. Автоматическое и автоматизированное управление. Классификация систем автоматического управления (сау).
- Функциональные схемы сау: разомкнутые и замкнутые сау. Обратная связь и ее типы.
- Структурные схемы систем и их эквивалентные преобразования.
- Формула Мейсена
- Временные характеристики систем. Переходная характеристика.
- Частотные характеристики систем.
- Логарифмические характеристики.
- Передаточная функция: определение и типы
- Типовые звенья и их характеристики
- Основные законы регулирования.
- Необходимое и достаточное условие устойчивости линейных систем
- Алгебраический критерий устойчивости (Рауса-Гурвица)
- Критерий устойчивости Михайлова.
- Критерий Найквиста.
- Точность систем автоматического управления в типовых режимах.
- Понятие переходного процесса. Оценка качества системы по переходной характеристике.
- Методы построения переходного процесса.
- Прямые и косвенные методы исследования качества управления.
- Основные методы повышения точности систем
- Теория инвариантности и комбинированное управление (далее ку)
- Корректирующие средства
- Основные принципы повышения запаса устойчивости систем
- Система с переменными параметрами (далее спр). Нормальная и сопряженная весовые функции
- Параметрическая передаточная функция (далее ппф) нестационарной системы
- Методы анализа нестационарных систем
- Системы с запаздыванием
- Нелинейные системы, общие понятия, особенности динамики, типовые нелинейности.
- Метод малых отклонений. Первый метод Ляпунова. Типы особых точек
- Метод интегрированной аппроксимации (на примере системы с реле)
- Второй метод Ляпунова
- Частотный критерий устойчивости в. М. Попова.
- Методы малого параметра (аналитические методы)
- Метод гармонического баланса.
- Преобразование случайных сигналов линейными системами.
- Преобразование случайных сигналов нелинейными системами.
- Статистически оптимальные параметры линейных систем.
- Статистически оптимальные системы. Уравнение Винера-Хопфа (на примере не реализуемой системы).
- Решение уравнения Винера-Хопфа (для физически реализуемой системы.) Решение уравнения Винера-Хопфа для физически реализуемой системы.
- Преобразование случайных сигналов безынерционными нелинейными системами.
- Метод статистической линеаризации.
- Понятие об оптимальных системах. Примеры постановки задач оптимального управления.
- Синтез управляющего устройства оптимальной по быстродействию системы методом фазовой плоскости.
- Вариационное исчисление и основные задачи вариационного исчисления. Перечислите основные задачи вариационного исчисления?
- Основная задача минимизации. Случай закрепленных конечных точек.
- Случай подвижных конечных точек. Задача перехвата.
- Вариационное исчисление в задачах оптимального управления. Управление по минимуму интегральной оценки.
- Учет физических ограничений и множители Лагранжа (на примере)
- Обобщенная задача оптимального управления.
- Принцип максимума Понтрягина.
- Метод динамического программирования Беллмана.