Линейные операторы
Пусть X,Y – линейные нормированные пространства. Понятие линейного оператора А: XY означает справедливость тождеств А(x1+x2) = А(x1) + А(x2), А(x) = А(x). Нас будут интересовать непрерывные линейные операторы. Их множество будем обозначать символом L(X,Y). В этом пункте в частности будет установлено, что L(X,Y) можно наделить структурой линейного нормированного пространства. Приведем несколько примеров.
Рассмотрим квадратную матрицу А = (аij) (i=1,2,…,n; j=1,2,…,n). Рассмотрим отображение А: , действующее по правилуА(х1,…,хn) = . Из свойств матриц и векторов следует линейность оператора А. Напомним что сходимость в пространстве покоординатная, т.е.х(n)х(0), если приi=1,…,n. Отсюда следует, что А(х(n)) А(х(0)), т.е. оператор А непрерывный. Обратно, любое линейное отображение А: порождается некоторой матрицейА и автоматически является непрерывным.
Пусть K(t,s) функция, непрерывная на квадрате 0 t 1, 0 s 1. Сопоставим функции х(t) C функцию y(s) =Функцияy(s) непрерывная, т.е. y(s) C. Тем самым определен оператор A: CC. Его линейность следует из свойств интеграла. Далее, если (х1,х2) = maxх1(t) х2(t)<, то y1(t)y2(t)
Это неравенство означает, что рассматриваемый оператор непрерывный. Такой оператор называется интегральным с ядром K(t,s).
ОПРЕДЕЛЕНИЕ 20. Линейный оператор А: X Y называется ограниченным, если существует такое положительное число Р, что ||Аx|| Р||x||. Здесь ||Аx|| норма элемента в пространстве Y, ||x|| норма элемента в пространстве X.
ТЕОРЕМА 13. Ограниченность линейного оператора равносильна его непрерывности.
Удивительно, что множество линейных непрерывных операторов L(X,Y) можно наделить структурой линейного нормированного пространства.
Если А,B L(X,Y), то суммой А+B линейных операторов называется оператор, действующий по правилу (А+B)(х) = Ах +Bх.
Если АL(X,Y), R, то произведением оператора на число называется оператор (А)(х) = (Ах). Поскольку в пространстве Y выполняются аксиомы линейного пространства, то множество L(X,Y) с введенными операциями является линейным пространством. Нулевым является оператор 0(х) = 0 для всех х.
Определим норму оператора как . Поскольку оператор ограниченный, то ||Аx|| Р||x|| при некотором Р, откуда число Р является верхней гранью множества {||Аx||: ||x|| 1}, т.е. по теореме о точной верхней грани норма определена.
ПРЕДЛОЖЕНИЕ 19. Определенная функция действительно является нормой.
Поскольку множество линейных непрерывных отображений имеет структуру линейного нормированного пространства, к нему применимы все результаты предыдущего раздела. Пример:
ТЕОРЕМА 14. Если Y – банахово пространства, то и пространство L(X,Y) банахово.
- 1. Метрические пространства.
- Некоторые важные неравенства
- Замыкания множеств. Замкнутые и открытые множества.
- Непрерывные отображения
- Полные метрические пространства
- Компактные метрические пространства
- Линейные нормированные пространства
- Изоморфные и изометричные линейные нормированные пространства
- Гильбертовы пространства
- Линейные операторы
- Сопряженные пространства и слабая сходимость
- Три фундаментальные теоремы функционального анализа