[Править]Оценка остатка ряда Лейбница
Из доказательства признака Лейбница следует, что сумма знакопеременного сходящегося ряда меньше по модулю первого члена остатка ряда. Поскольку любой остаток ряда rnявляется также рядом Лейбница, то для него справедливо:
.
6 абсолютная и условная сходимость знакопеременного ряда
Абсолютная и условная сходимость Ряд называется абсолютно сходящимся, если ряд также сходится. Если ряд сходится абсолютно, то он является сходящимся (в обычном смысле). Обратное утверждение неверно. Ряд называется условно сходящимся, если сам он сходится, а ряд, составленный из модулей его членов, расходится. |
Пример 1 |
|
Исследовать на сходимость ряд . Решение. Применим достаточный признак Лейбница для знакочередующихся рядов. Получаем
поскольку . Следовательно, данный ряд сходится. |
Пример 2 |
|
Исследовать на сходимость ряд . Решение. Попробуем применить признак Лейбница:
Видно, что модуль общего члена не стремится к нулю при n → ∞. Поэтому данный ряд расходится . |
7 понятие степенного ряда.Ряд Тейлора,Маклорена
- Гиперболи́ческие фу́нкции — семейство элементарных функций, выражающихся через экспоненту и тесно связанных с тригонометрическими функциями. Определение
- Определение
- [Править]Сходимость числовых рядов
- [Править]Необходимый признак сходимости ряда
- Знакочередующийся ряд
- [Править]Признак Лейбница
- [Править]Оценка остатка ряда Лейбница
- Степенной ряд
- [Править]Пространство степенных рядов
- [Править]Сходимость степенных рядов
- [Править]Признаки сходимости
- Ряд Тейлора
- [Править]Определение
- [Править]Связанные определения
- [Править]Свойства
- [Править]Формула Тейлора
- [Править]Различные формы остаточного члена
- Ряды Маклорена некоторых функций
- 8 Ряды фурье Ряд Фурье
- 10 Двойной Интегралл Двойной интеграл
- 11 Понятие о дифференциальном уравнении. Задача Коши
- Задача Коши
- [Править]Различные постановки задачи Коши
- 12 Дифференциальные уравнения с разделяющимися переменными
- 13 Однородное дифференциальное уравнение
- 15 Линейное дифференциальное уравнение с постоянными коэффициентами
- [Править]Однородное уравнение [править]Уравнение порядка n
- [Править]Уравнение второго порядка
- Тандартная модель
- Действия над комплексными числами