ответы половина
Ряд Тейлора
[править]
Материал из Википедии — свободной энциклопедии
Ряд Те́йлора — разложение функции в бесконечную сумму степенных функций.
Ряд назван в честь английского математика Брука Тейлора, хотя ряд Тейлора был известен задолго до публикаций Тейлора — его использовали ещё в XVII веке Грегори, а такжеНьютон.
Ряды Тейлора применяются при аппроксимации функции многочленами. В частности, линеаризация уравнений происходит путём разложения в ряд Тейлора и отсечения всех членов выше первого порядка.
Содержание [убрать]
|
Содержание
- Гиперболи́ческие фу́нкции — семейство элементарных функций, выражающихся через экспоненту и тесно связанных с тригонометрическими функциями. Определение
- Определение
- [Править]Сходимость числовых рядов
- [Править]Необходимый признак сходимости ряда
- Знакочередующийся ряд
- [Править]Признак Лейбница
- [Править]Оценка остатка ряда Лейбница
- Степенной ряд
- [Править]Пространство степенных рядов
- [Править]Сходимость степенных рядов
- [Править]Признаки сходимости
- Ряд Тейлора
- [Править]Определение
- [Править]Связанные определения
- [Править]Свойства
- [Править]Формула Тейлора
- [Править]Различные формы остаточного члена
- Ряды Маклорена некоторых функций
- 8 Ряды фурье Ряд Фурье
- 10 Двойной Интегралл Двойной интеграл
- 11 Понятие о дифференциальном уравнении. Задача Коши
- Задача Коши
- [Править]Различные постановки задачи Коши
- 12 Дифференциальные уравнения с разделяющимися переменными
- 13 Однородное дифференциальное уравнение
- 15 Линейное дифференциальное уравнение с постоянными коэффициентами
- [Править]Однородное уравнение [править]Уравнение порядка n
- [Править]Уравнение второго порядка
- Тандартная модель
- Действия над комплексными числами