logo
ответы половина

10 Двойной Интегралл Двойной интеграл

Геометрический смысл двойного интеграла

Двойным интегралом называют кратный интеграл с  .

. Здесь   — элемент площади в рассматриваемых координатах.

В прямоугольных координатах:  , где   — элемент площади в прямоугольных координатах.

[править]Геометрический смысл двойного интеграла

Пусть функция   принимает в области   только положительные значения. Тогда двойной интеграл   численно равен объему   вертикального цилиндрического тела, построенного на основании   и ограниченного сверху соответствующим куском поверхности  .

[править]Выражение двойного интеграла через полярные координаты

Переход из прямоугольных координат в полярные.

Переход из прямоугольных координат в полярные.

В некоторых случаях двойной интеграл проще считать не в прямоугольных, а в полярных координатах, так как при этом может произойти существенное упрощение вида области интегрирования и всего процесса интегрирования в целом.

Применим теорему о замене переменных. Соответствующее переходу преобразование имеет вид:

Модуль якобиана отображения равен  . Таким образом получаем, что

.

Здесь   является элементом площади в полярных координатах.

[править]Пример перехода в произвольную систему координат

Посчитаем площадь области  .

Переход в полярную систему координат не сделает область проще:

.

Множитель перед синусом «мешает». В этом случае переход можно немного скорректировать:

.

Это преобразование переведет исходную область в следующую:

.

Якобиан отображения:

.

Модуль Якобиана также равен  .

Отсюда

.

Результат верный, так как область   ограничена эллипсом, заданным каноническим уравнением. Площадь можно посчитать по формуле  . Путем подстановки убеждаемся в верности вычисления интеграла.

[править]Приложения двойных интегралов

Наименование величины

Общее выражение

Прямоугольные координаты

Полярные координаты

Площадь плоской фигуры

Масса тонкой плоской пластинки

плотностью 

Площадь куска поверхности

Объем цилиндрического тела,

стоящего на плоскости 

Момент инерции плоской фигуры

относительно оси 

Момент инерции плоской фигуры

относительно оси 

Координаты центра тяжести

однородной пластинки

Примечания

1) Область   — проекция на плоскость  ; в каждую точку области проектируется только одна точка поверхности;

 — угол между касательной плоскостью и плоскостью  .

2) Совмещенной с плоскостью  .

3) Или, что то же, относительно центра О.