1.1. Дискретизация
Пусть требуется найти приближенное решение какой-либо задачи, в которой в качестве входных данных участвует какая-либо функция f(x), определенная на всем (бесконечном) множестве точек отрезка 0≤x≤1. Значения этой функции при каждом фиксированном x можно получить измерениями или вычислениями. Для запоминания этой функции в памяти компьютера необходимо приближенно описать ее таблицей значений на некотором конечном множестве отдельных точек . Это – простейший пример дискретизации задачи: от задачи запоминания функции на отрезке[0, 1] мы перешли к задаче запоминания таблицы значений на дискретном множестве точек из этого отрезка.
Пусть функция f(x), имеет достаточное число производных, а нам требуется вычислить ее производную , в данной точке x. Задачу отыскания
,
содержащую предельный переход, можно заменить приближенно задачами вычисления по одной из формул
(1.1)
(1.2)
(1.3)
Для замены производной можно воспользоваться формулой
(1.4)
Все эти формулы уточняются при уменьшении h, а при каждом фиксированном h определены для конечных наборов значений функции и используют только арифметические операции. Эти формулы – примеры дискретизации задачи о вычислении производных , .
Рассмотрим краевую задачу
(1.5)
y(0) = 2, y(1) = 3,
Об отыскании функции y(x), определенной на отрезке . Для построения приближенной дискретной модели этой задачи осуществим следующие два шага.
Разобьем отрезок на N равных частей длины каждая, а вместо функцииy(x) будем искать набор значений этой функции в точках . В точках заменим производную приближенно по формуле (4) и получим
(1.6)
Кроме того, в силу граничных условий (5) положим
. (1.7)
Система N+1 линейных уравнений (1.6), (1.7) относительно того же числа неизвестных является дискретным аналогом задачи (1.5).
Есть основания думать, что с ростом N решение задачи (1.6), (1.7) есть все более точная таблица значений решения задачи (1.5) (в дальнейшем это будет показано).
Обозначим континуальную краевую задачу через , а дискретную краевую задачу (1.6), (1.7) через. Тогда можно сказать, что задаче мы сопоставили бесконечную последовательность дискретных задач (N=2,3,…).
Вычисляя решение задачи при каком-либо фиксированномN, мы имеем дело с конечным набором чисел, задающих входные данные, и с конечным набором чисел , подлежащих отысканию. Однако вычислительная математика обычно ставит своей целью предложить именно последовательность уточняющихся дискретных моделей, так как это дает возможность выбрать тоN, которое обеспечивает выполнение требований к точности.
Переход от континуальной задачи к последовательности ее дискретных моделей возможен многими способами. Пусть ,– какие-нибудь две последовательности таких моделей, причем вычисления решений дискретных задач и требует равных затрат. Тогда предпочтение надо отдать тому способу дискретизации, при котором решение дискретной задачи может служить решением исходной задачи с заданной точностью при меньшем значении N.
Бывает, что из двух, казалось бы, равноценных способов дискретизации и один при возрастании N дает все более точное приближение к решению континуальной задачи , а другой приводит к “приближенному решению” задачи, которое с ростомN теряет какое-либо сходство с искомым решением.
1.2. Обусловленность
Во всякой задаче требуется по входным данным сделать заключение о каких-либо свойствах решения. Похожие на первый взгляд задачи могут резко отличаться чувствительностью интересующих свойств решения к возмущению входных данных. Если это чувствительность “мала”, то задача считается хорошо обусловленной; в противном случае – плохо обусловленной. Обычно плохо обусловленные задачи не только предъявляют высокие требования к точности задания входных данных, но и более трудны для вычислений.
Пример. Пусть концентрация y = y(t) некоторого вещества в момент времени t есть функция, удовлетворяющая дифференциальному уравнению
.
Фиксируем произвольно и делаем приближенное измерение концентрации , получим
.
Задача состоит в определении концентрации y = y(t) в произвольный момент времени t из отрезка .
Если бы число было известно точно, то можно было бы указать точную формулу
для концентрации. Но мы знаем лишь приближенное значение числа. Поэтому вместо мы можем указать лишь приближенную формулу . Очевидно, что погрешность выражается формулой
.
Допустим, нам нужно произвести замер с такой точностью ,,чтобы гарантировать некоторую заданную точность всюду на отрезке ,т.е. гарантировать оценку
.
Очевидно,
.
Отсюда получаем следующее требование к точности δ измерения y0 :
.
Пусть измерение производится в момент . Тогда требование к точности измерения будет в раз, т.е. в тысячи раз выше, чем требуемая гарантированная точность ε результата. Ответ весьма чувствителен к погрешности задания входных данных, т. е. , и задача плохо обусловлена.
Если измерение производить при , то, т. е. достаточно измерение с гораздо меньшей точностью, чем в случае, и задача хорошо обусловлена.
Задача
На каком из двух отрезков x: или [-1, 0], задача вычисления лучше обусловлена.
Лекция № 2
- Министерство образования и науки Российской Федерации
- Оглавление
- Лекция № 1
- 1. Особенности математических вычислений, реализуемых на эвм: теоретические основы численных методов: погрешности вычислений
- 1.1. Дискретизация
- 1.3. Погрешность
- 1.4. Устойчивость и сложность алгоритма (по памяти, по времени)
- 2.1. Основные понятия линейной алгебры. Классификация методов решения
- 2.2. Метод исключения Гаусса. Вычисление определителя и обратной матрицы методом исключения
- 2.3. Численные методы решения линейных уравнений
- 2.3.1. Метод прогонки
- 2.3.2. Итерационные методы
- 3.1. Решение нелинейных уравнений
- 3.1.1. Метод половинного деления
- 3.1.2. Метод простой итерации
- 3.1.3. Метод Ньютона
- 3.1.4. Метод секущих
- 3.1.5. Метод парабол
- 3.2. Методы решения нелинейных систем уравнений
- 4.1.Функция и способы ее задания
- 4.2 Основные понятия теории приближения функций
- 4.3 Интерполяция функций
- 4.3.1 Интерполирование с помощью многочленов
- 4.3.2 Погрешность интерполяционных методов
- 4.3.3 Интерполяционный многочлен Лагранжа
- 4.3.4 Конечные разности
- 4.3.5 Интерполяционные многочлены Стирлинга и Бесселя
- 4.3.6 Интерполяционные многочлены Ньютона
- 4.3.7 Разделенные разности
- 4.3.8 Интерполяционный многочлен Ньютона для произвольной сетки узлов
- 4.3.9 Итерационно-интерполяционный метод Эйткина
- 4.3.10 Интерполирование с кратными узлами
- 4.4 Равномерное приближение функций. Приближение методом наименьших квадратов
- 5.1. Численное дифференцирование
- 5.2. Формулы численного интегрирования
- 5.3. Решение обыкновенных дифференциальных уравнений. Метод конечных разностей для численного решения дифференциальных уравнений
- Интегрирование дифференциальных уравнений с помощью степенных рядов
- 5.4. Преобразование Фурье
- 5.4.1 Применения преобразования Фурье
- 5.4.2 Разновидности преобразования Фурье Непрерывное преобразование Фурье
- Ряды Фурье
- Дискретное преобразование Фурье
- Оконное преобразование Фурье
- Другие варианты
- 5.4.3 Интерпретация в терминах времени и частоты
- 5.4.4 Таблица важных преобразований Фурье
- Библиографический список