4.1. Прямые доказательства
Теория доказательства разработана в формальной логике и включает три структурных компонента: тезис; аргументы; демонстрация.
Тезис – это то, что предполагается доказать.
Аргументы – совокупность фактов, общепринятых понятий, законов и т.п. соответствующей науки.
Демонстрация – сама процедура развертывания доказательства; последовательная цепь умозаключений, когда n-е умозаключение становится одной из посылок (n+1)-го умозаключения. Выделяются правила доказательства, указаны возможные логические ошибки.
Математическое доказательство имеет много общего с теми принципами, которые устанавливаются формальной логикой. Более того, математические правила рассуждений и операций, очевидно, послужили одной из основ в разработке процедуры доказательства
влогике.
Вматематике доказательством называется цепочка логических умозаключений, показывающая, что при каком-то наборе аксиом и правил вывода, верно, некоторое утверждение. Таким образом, математическое доказательство представляет рассуждение, имеющее задачей обосновать истинность (конечно, в математическом, то есть как выводимость, смысле) какого-либо утверждения.
Как правило, в математике выделяют следующие понятия:
• теоремы, как доказуемые утверждения;
• гипотезы, если ни утверждение, ни его отрицание ещё не доказаны;
• леммы, как менее сложные утверждения, которые доказываются.
Вматематике существуют нерешённые проблемы, решение которых учёным очень хотелось бы найти. За доказательства особен-
- Предисловие
- 1.2.Теория множеств
- 1.2.1. Основные понятия теории множеств
- 1.2.4. Свойства операций над множествами
- 1.3.4. Свойства бинарных отношений
- 1.3.7. Отношение толерантности
- 1.3.8. Операции над отношениями
- 2.1. Фундаментальные алгебры
- 2.2. Алгебра высказываний
- 2.6. Булевы функции
- 2.7. Формы представления логических функций
- 2.10. Построение логических схем
- Глава 3. Формальные теории
- 3.1. Основные свойства формальных теорий
- 3.1.1. Выводимость
- 4.1. Прямые доказательства
- 4.2.Косвенные доказательства
- Глава 5. Основы комбинаторики
- 5.4. Разбиения
- 5.7. Производящие функции
- Глава 6. Основы теории графов
- 6.1. Основные понятия
- 6.6. Устойчивость графов
- 6.6.1. Внутренняя устойчивость
- 6.7.3. Двудольное представление графов
- 6.10. Построение графов
- 6.10.1. Преобразование прилагательных в числительные
- 6.10.3. Оценка количества ребер сверху и снизу
- 7.1. Введение в теорию нечетких моделей
- 7.1.1. Принятие решений в условиях неопределенности
- 7.2. Нечеткие множества. Базовые определения
- 7.2.1. Базовые и нечеткие значения переменных
- 7.3.Операции над нечеткими множествами
- 7.3.5. Операции «равенство» и «разность»
- 7.7. Нечеткие числа
- 7.8.Приближенные рассуждения
- 7.8.1. Нечеткая лингвистическая логика
- 7.8.2. Композиционное правило вывода
- Список литературы