Метод Гаусса
Метод Гаусса основан на теореме: если к некоторому уравнению системы прибавить другое уравнение этой системы, умноженное на любое действительное число, или умножить любое уравнение системы на отличное от нуля действительное число, то полученная система будет эквивалентна исходной.
Метод Гаусса называют также методом последовательного исключения неизвестных, осуществляя его за несколько итераций. На каждой итерации выбирается разрешающее уравнение и базисное неизвестное. В качестве разрешающего уравнения можно взять любое уравнение системы, которое ранее не было выбрано разрешающим и не все коэффициенты которого равны нулю. За базисное неизвестное выбирают неизвестное, коэффициент при котором в разрешающем уравнении, называемый разрешающим коэффициентом, не равен нулю.
Алгоритм метода следующий:
Выбирают разрешающее уравнение и базисное неизвестное.
Делят обе части разрешающего уравнения на разрешающий коэффициент и исключают базисное неизвестное из всех уравнений системы, кроме разрешающего. Отбрасывают, если они появились, уравнения, все коэффициенты и свободный член в котором равны нулю. Если получилось уравнение, в котором коэффициенты нулевые, а свободный член не нуль, то система несовместна, конец. Если таких уравнений нет, то шаг 1. Если все уравнения были использованы в качестве разрешающих, то шаг 3.
Если нет, то шаг 1
Базисные неизвестные оставляют слева, а небазисные (назовем их свободными, так как они могут принимать любые значения) переносят вправо. Тем самым получено общее решение системы. Конец.
- А кадемия управления при Президенте Республики Беларусь
- Курс лекций
- Введение Лекция 1. Основы математической логики
- Высказывания и логические связки
- Контрольные вопросы к теме:
- Элементарная математика Лекция 2. Элементы теории множеств.
- Основные понятия.
- Основные операции над множествами
- Отображения.
- Отношения эквивалентности и упорядоченности
- Контрольные вопросы к теме
- Лекция 3. Числовые множества.
- Основные понятия
- Соединения. Бином Ньютона.
- Комплексные числа
- Операции над комплексными числами
- Формула Муавра. Извлечение корня из комплексного числа.
- Контрольные вопросы к теме
- Аналитическая геометрия
- Лекция 4. Векторы
- Основные понятия
- Линейные операции над векторами
- Проекция вектора на ось
- Линейная зависимость векторов
- Базис. Координаты вектора в базисе
- Декартовы прямоугольные координаты в пространстве. Координаты точек. Координаты векторов. Деление отрезка в данном отношении
- Направляющие косинусы
- Скалярное произведение
- Векторное произведение
- Смешанное произведение
- Контрольные вопросы к теме
- Лекция 5. Прямая
- Основные понятия
- Взаимное расположение прямых
- Контрольные вопросы к теме
- Лекция 6. Плоскость
- Основные понятия
- Нормальное уравнение плоскости
- Взаимное расположение плоскостей
- Контрольные вопросы к теме
- Лекция 7. Кривые второго порядка
- Гипербола
- Парабола
- Исследование на плоскости уравнения второй степени
- Контрольные вопросы к теме
- Линейная алгебра Лекция 8. Понятие евклидова пространства.
- – Мерные векторы
- Коллинеарные векторы
- Размерность и базис векторного пространства
- Контрольные вопросы к теме
- Лекция 9. Матрицы
- Основные понятия
- Операции над матрицами
- Определитель матрицы
- Ранг матрицы
- Обратная матрица
- Контрольные вопросы к теме
- Лекция 10. *Понятие линейного оператора*
- Переход к новому базису
- Линейное преобразование переменных
- Собственные значения и собственные вектора матриц
- Контрольные вопросы к теме
- Лекция 11. Многочлены
- Основные понятия
- Теорема о делении с остатком.
- Теорема Безу.
- Контрольные вопросы к теме
- Понятие квадратичной формы.
- Канонический базис квадратичной формы
- Канонический базис из собственных векторов матрицы квадратичной формы
- Канонический базис Якоби квадратичной формы .
- Положительно и отрицательно определенные квадратичные формы
- Квадратичная форма положительно определена тогда и только тогда, когда , ,…, .
- Квадратичная форма отрицательно определена тогда и только тогда, когда , ,…, .
- Квадратичная форма положительно определена тогда и только тогда, когда все собственные значения матрицы положительны.
- Квадратичная форма отрицательно определена тогда и только тогда, когда все собственные значения матрицы отрицательны
- Квадратичная форма положительно определена тогда и только тогда, когда главные миноры матрицы положительны.
- Квадратичная форма отрицательно определена тогда и только тогда, когда главные миноры матрицы четного порядка положительны, а главные миноры матрицы нечетного порядка отрицательны.
- Применение квадратичных форм к исследованию кривых второго прядка.
- Контрольные вопросы к теме
- Лекция 13. Системы линейных уравнений
- Основные понятия
- Критерий совместности системы линейных уравнений
- Правило Крамера решения систем линейных уравнений
- Метод Гаусса
- Однородные системы уравнений.
- Разрешенные системы линейных уравнений
- Можно построить решение системы уравнений, у которого значения свободных переменных будут равны соответственно ;
- Если у решений и системы уравнений значения свободных переменных совпадают, то и сами решения совпадают.
- Контрольные вопросы к теме
- Лекция 14. *Основы линейного программирования*
- Линейное программирование
- Задача линейного программирования
- Приведение общей задачи линейного программирования к канонической форме.
- Множества допустимых решений
- Опорное решение задачи линейного программирования, его взаимосвязь с угловыми точками.
- Симплекс-метод с естественным базисом.
- Симплексный метод с искусственным базисом (м-метод).
- Теория двойственности.
- Теоремы двойственности
- Контрольные вопросы к теме
- Экзаменационные вопросы
- Литература