Ранг матрицы
Рангом матрицы называется наибольший порядок ее миноров, отличных от нуля. Ранг матрицы обозначают или .
Если все миноры порядка данной матрицы равны нулю, то все миноры более высокого порядка данной матрицы также равны нулю. Это следует из определения определителя. Отсюда вытекает алгоритм нахождения ранга матрицы.
Если все миноры первого порядка (элементы матрицы ) равны нулю, то . Если хотя бы один из миноров первого порядка отличен от нуля, а все миноры второго порядка равны нулю, то . Причем, достаточно просмотреть только те миноры второго порядка, которые окаймляют ненулевой минор первого порядка. Если найдется минор второго порядка отличный от нуля, исследуют миноры третьего порядка, окаймляющие ненулевой минор второго порядка. Так продолжают до тех пор, пока не придут к одному из двух случаев: либо все миноры порядка , окаймляющие ненулевой минор -го порядка равны нулю, либо таких миноров нет. Тогда .
Пример 10. Вычислить ранг матрицы .
Минор первого порядка (элемент ) отличен от нуля. Окаймляющий его минор тоже не равен нулю.
Далее рассмотрим миноры, окаймляющие минор :
;
.
Все эти миноры равны нулю, значит .
Приведенный алгоритм нахождения ранга матрицы не всегда удобен, поскольку связан с вычислением большого числа определителей. Наиболее удобно пользоваться при вычислении ранга матрицы элементарными преобразованиями, при помощи которых матрица приводится к столь простому виду, что очевидно, чему равен ее ранг.
Элементарными преобразованиями матрицы называют следующие преобразования:
умножение какой-нибудь строки (столбца) матрица на число, отличное от нуля;
прибавление к одной строке (столбцу) другой строки (столбца), умноженной на произвольное число.
Полужордановым преобразованием строк матрицы
с разрешающим элементом называется следующая совокупность преобразований со строками матрицы:
к первой строке прибавить ю, умноженную на число и т.д.
к последней строке прибавить ю, умноженную на число .
После выполнения этих преобразований получается матрица
Полужордановым преобразованием столбцов матрицы с разрешающим элементом называется следующая совокупность преобразований со столбцами матрицы:
к первму столбцу прибавить й, умноженный на число и т.д.
к последнему столбцу прибавить й, умноженный на число .
После выполнения этих преобразований получается матрица
Полужорданово преобразование строк или столбцов квадратной матрицы не изменяет ее определителя.
Элементарные преобразования матрицы не изменяют ее ранга. Покажем на пример, как вычислить ранг матрицы, пользуясь элементарными преобразованиями.
Пример 11. Вычислить ранг матрицы .
Применим к матрице элементарные преобразования: первую строку матрицы, умноженную на (-3) прибавим ко второй и третьей и ее же вычтем из последней.
Вычитая далее вторую строку из третьей и последней, имеем:
.
Последняя матрица содержит отличный от нуля минор третьего порядка, определитель же самой матрицы равен нулю. Следовательно, .
Отметим два важных свойства ранга матрицы.
Ранг матрицы не меняется при ее транспонировании.
Если ранг матрицы равен , то любые ее строк (столбцов) линейно зависимы.
Yandex.RTB R-A-252273-3- А кадемия управления при Президенте Республики Беларусь
- Курс лекций
- Введение Лекция 1. Основы математической логики
- Высказывания и логические связки
- Контрольные вопросы к теме:
- Элементарная математика Лекция 2. Элементы теории множеств.
- Основные понятия.
- Основные операции над множествами
- Отображения.
- Отношения эквивалентности и упорядоченности
- Контрольные вопросы к теме
- Лекция 3. Числовые множества.
- Основные понятия
- Соединения. Бином Ньютона.
- Комплексные числа
- Операции над комплексными числами
- Формула Муавра. Извлечение корня из комплексного числа.
- Контрольные вопросы к теме
- Аналитическая геометрия
- Лекция 4. Векторы
- Основные понятия
- Линейные операции над векторами
- Проекция вектора на ось
- Линейная зависимость векторов
- Базис. Координаты вектора в базисе
- Декартовы прямоугольные координаты в пространстве. Координаты точек. Координаты векторов. Деление отрезка в данном отношении
- Направляющие косинусы
- Скалярное произведение
- Векторное произведение
- Смешанное произведение
- Контрольные вопросы к теме
- Лекция 5. Прямая
- Основные понятия
- Взаимное расположение прямых
- Контрольные вопросы к теме
- Лекция 6. Плоскость
- Основные понятия
- Нормальное уравнение плоскости
- Взаимное расположение плоскостей
- Контрольные вопросы к теме
- Лекция 7. Кривые второго порядка
- Гипербола
- Парабола
- Исследование на плоскости уравнения второй степени
- Контрольные вопросы к теме
- Линейная алгебра Лекция 8. Понятие евклидова пространства.
- – Мерные векторы
- Коллинеарные векторы
- Размерность и базис векторного пространства
- Контрольные вопросы к теме
- Лекция 9. Матрицы
- Основные понятия
- Операции над матрицами
- Определитель матрицы
- Ранг матрицы
- Обратная матрица
- Контрольные вопросы к теме
- Лекция 10. *Понятие линейного оператора*
- Переход к новому базису
- Линейное преобразование переменных
- Собственные значения и собственные вектора матриц
- Контрольные вопросы к теме
- Лекция 11. Многочлены
- Основные понятия
- Теорема о делении с остатком.
- Теорема Безу.
- Контрольные вопросы к теме
- Понятие квадратичной формы.
- Канонический базис квадратичной формы
- Канонический базис из собственных векторов матрицы квадратичной формы
- Канонический базис Якоби квадратичной формы .
- Положительно и отрицательно определенные квадратичные формы
- Квадратичная форма положительно определена тогда и только тогда, когда , ,…, .
- Квадратичная форма отрицательно определена тогда и только тогда, когда , ,…, .
- Квадратичная форма положительно определена тогда и только тогда, когда все собственные значения матрицы положительны.
- Квадратичная форма отрицательно определена тогда и только тогда, когда все собственные значения матрицы отрицательны
- Квадратичная форма положительно определена тогда и только тогда, когда главные миноры матрицы положительны.
- Квадратичная форма отрицательно определена тогда и только тогда, когда главные миноры матрицы четного порядка положительны, а главные миноры матрицы нечетного порядка отрицательны.
- Применение квадратичных форм к исследованию кривых второго прядка.
- Контрольные вопросы к теме
- Лекция 13. Системы линейных уравнений
- Основные понятия
- Критерий совместности системы линейных уравнений
- Правило Крамера решения систем линейных уравнений
- Метод Гаусса
- Однородные системы уравнений.
- Разрешенные системы линейных уравнений
- Можно построить решение системы уравнений, у которого значения свободных переменных будут равны соответственно ;
- Если у решений и системы уравнений значения свободных переменных совпадают, то и сами решения совпадают.
- Контрольные вопросы к теме
- Лекция 14. *Основы линейного программирования*
- Линейное программирование
- Задача линейного программирования
- Приведение общей задачи линейного программирования к канонической форме.
- Множества допустимых решений
- Опорное решение задачи линейного программирования, его взаимосвязь с угловыми точками.
- Симплекс-метод с естественным базисом.
- Симплексный метод с искусственным базисом (м-метод).
- Теория двойственности.
- Теоремы двойственности
- Контрольные вопросы к теме
- Экзаменационные вопросы
- Литература