logo
Курс лекций ВМ (I семестр)

Основные понятия

Будем рассматривать множества, элементами которых являются числа. Такие множества называются числовыми. Числовые множества задаются на оси действительных чисел R. На этой оси выбирают масштаб и указывают начало отсчета и направление. Наиболее распространенные числовые множества:

‑ множество натуральных чисел;

‑ множество целых чисел;

– множество рациональных или дробных чисел;

‑ множество действительных чисел.

Множество всех рациональных чисел является счетным множеством. Счетным является множество всех точек плоскости (пространства) имеющих рациональные координаты.

Множество всех действительных чисел является несчетным: оно имеет мощность, называемую континуумом

Некоторое непустое подмножество множества действительных чисел называют ограниченным сверху (снизу), если существует действительное число такое, что выполняется неравенство ( ).

Всякое число с указанным свойством называют верхней (нижней) гранью множества .

Непустое подмножество множества действительных чисел называется ограниченным, если оно ограничено и сверху и снизу.

В противоположность этому определению, множество называется неограниченным сверху (снизу), если какое бы число мы бы не предложили в качестве верхней (нижней) границы множества , всегда найдется элемент этого множества, который будет больше (меньше) .

Множество, неограниченное как сверху, так и снизу, называется неограниченным множеством.

Наименьшую из верхних граней непустого подмножества множества действительных чисел называют точной верхней гранью этого множества и обозначают sup . Наибольшую из нижних граней непустого подмножества множества действительных чисел называют точной нижней гранью этого множества и обозначают inf . Символы sup и inf являются сокращениями от supremum (самый верхний) и infimum (самый нижний).

Примем без доказательства утверждение о том, что всякое ограниченное сверху (снизу) множество имеет точную верхнюю (нижнюю) грань.

Граничной точкой множества называется точка, у которой в любом содержащем ее открытом промежутке найдутся как точки, принадлежащие множеству, так и точки не принадлежащие множеству. Сама граничная точка может, как принадлежать множеству, так и не принадлежать ему.

Граница множества – совокупность граничных точек множества.

(множество натуральных чисел) ограниченно снизу (например, числом ) и не ограничено сверху;

(множество действительных чисел) неограничено;

множество отрицательных чисел неограничено снизу и ограничено сверху.

Yandex.RTB R-A-252273-3
Yandex.RTB R-A-252273-4