logo search
Voprosy_1y_semestr_1_kurs_Avtosokhranennyy

Бмп. Доказать свойства бмп.

Последовательность называется БМП (бесконечно малой последовательностью) , если для любого положительного (эпсилон) найдется номер, зависящий от , такой, что, как только n>N выполняется неравенство

( )

Теорема 1. Сумма двух БМП есть БМП.

Доказательство:

П усть и - БМП. Тогда соотношение (*) имеет место для каждой из данных последовательностей. Выберем , тогда для последовательности найдется номер , начиная с которого , а для последовательности найдется номер начиная с которого

Рассмотрим последовательность . Пусть тогда, начиная с номера , , т.е. для , начиная с номера . Это означает, что последовательность является БМП. 

Следствие. Сумма любого конечного числа БМП есть БМП. (Доказать самостоятельно).

Теорема 2. БМП ограничена.

Доказательство:

Пусть - БМП. Тогда для нее имеет место соотношение (*), т.е. начиная с некоторого члены войдут в -коридор. Другими словами, из этого -коридора выпадает не более чем конечное число первых членов последовательно-

сти . Пусть , тогда , что означает ограниченность последовательности .

Теорема 3. Если - БМП, а ограничена, то последовательность является БМП.

Доказательство:

Так как -БМП, то имеет место соотношение (*). Выберем и найдем номер , начиная с которого члены последовательности войдут в -коридор, где число . Тогда, начиная с номера , будет выполняться неравенство . 

Следствие 1. Произведение двух БМП есть БМП. (Доказать самостоятельно).

Следствие 2. Произведение любого конечного БМП есть БМП. (Доказать самостоятельно).

Теорема 4. Для того, чтобы последовательность была БМП, необходимо и достаточно, чтобы была ББП.

Доказательство:

Необходимость. Пусть - ББП. Тогда имеет место соотношение (*), т.е., начиная с некоторого номера . Пусть , тогда , т.е. , что означает: - ББП.

Достаточность доказать самостоятельно.