Доказать принципы компактности и полноты.
Теорема 2. Теорема Больцано-Вейерштрасса - принцип компактности.
Из любой ограниченной последовательности можно выделить сходящуюся подпоследовательность.
Доказательство:
Пусть последовательность ограничена, т.е. . Следовательно, множество ограничено. По принципу ТВГ и ТНГ имеем . Построим ССС следующим образом.
Разделим отрезок пополам. Тогда, по крайней мере, в одном из полученных интервалов содержится бесконечное число членов последовательности . Пусть является таковым. Далее, отрезок поделим пополам и выберем тот из полученных, который содержит бесконечное число членов последовательности. Обозначим его и т.д. В результате получим СВС : , причем длина -го отрезка равна .
Назовем самый крайний левый член последовательности, который уже попадает в интервал . Далее, назовем самый крайний левый член последовательности, который уже попадает в интервал при условии, что , и т.д. получим некоторую подпоследовательность , причем .
В соответствии с теоремой Кантора о существовании и единственности точки , принадлежащей всем ССС сразу, имеем и . То по теореме о двух милиционерах подпоследовательность .
Пример. Рассмотрим последовательность . В последовательности можно выделить подпоследовательности и , которые сходятся к 0 и 1 соответственно.
Определение 2. Последовательность называется фундаментальной, если выполняется соотношение (***): .
Другими словами, модуль разности между сколь угодно далекими членами последовательности может быть сколь угодно мал, если эти члены достаточно далеко.
Пример 3. Критерий Коши - принцип полноты.
Для того, чтобы последовательность была сходящейся, необходимо и достаточно, чтобы она была фундаментальной.
Доказательство:
Необходимость. Пусть сходится, т.е. существует . Тогда имеет место соотношение (**), т.е. существует некоторый номер , начиная с которого . Тогда .
Рассмотрим . Таким образом, выпол-
няется соотношение (***), следовательно, - фундаментальная последовательность.
Достаточность. Пусть - фундаментальная последовательность. Тогда имеет место соотношение (***), т.е. начиная с некоторого номера , или . Это означает, что, начиная с некоторого номера , последовательность ограничена. Тогда в соответствие с принципом компактности из последовательности можно выделить сходящуюся подпоследовательность . Пусть . Тогда имеет место соотношение (**), т.е. начиная с номера .
С другой стороны, последовательность фундаментальная. Следовательно, имеет место соотношение (***), т.е. начиная с номера (в силу построения подпоследовательности ). Пусть . Тогда, начиная с номера . Таким образом, выполняется соотношение (**), т.е. последовательность сходится.
- Вопросы 1й семестр 1 курс
- Высказывания. Дизъюнкция. Конъюнция, импликация. Типы теорем. Доказать дизъюнктивную форму импликации. Доказать принцип контрапозиции.
- 1. 3.1. Высказывания
- Понятие вектора. Линейная зависимость и линейная независимость векторов. Доказать теоремы о линейной зависимости.
- Вектор (Гиббс) – математический объект, характеризуемый скалярной величиной, направлением и геометрическим характером сложения.
- Доказать существование и единственность разложения по базису на плоскости и в пространстве.
- Доказательство:
- Скалярное произведение. Доказать его свойства.
- Свойства скалярного произведения:
- Дистрибутивность: .
- Векторное произведение. Доказать его свойства.
- Свойства векторного произведения:
- Антикоммутативность: .
- Дистрибутивность:
- Смешанное произведение. Доказать критерий компланарности векторов.
- Получить уравнение плоскости и прямой в пространстве.
- Определение эллипса. Доказать его свойства.
- Свойства эллипса
- Доказательство:
- Определение гиперболы. Доказать ее свойства.
- Свойства гиперболы
- Определение параболы. Доказать ее свойства.
- Свойства параболы
- Повехности второго порядка. Полчить уравнения цилиндрических поверхностей и поверхностей вращения.
- 3. Двуполостной гиперболоид:
- Цилиндрические поверхности
- 9 . Гиперболический параболоид
- Алгебраическая, тригонометрическая и показательная формы комплексного числа. Получить формулу Муавра и формулу извлечения корня n-ой степени из комплексного числа.
- Решение:
- Основная теорема алгебры. Доказать ее следствия.
- Доказательство:
- Доказательство леммы:
- Доказательство:
- Числовые множества, замкнутость. Показать непрерывность действительной оси. Понятие твг и тнг.
- Бмп. Доказать свойства бмп.
- Предел числовой последовательности. Доказать единственность предела последовательности.
- Последовательности бывают:
- Бмп (бесконечно малые последовательности);
- 3. Неограниченные;
- Пример. Последовательность ограничена, но не является бмп.
- Показать существование предела последовательности Бернулли. Число e.
- Доказать принципы компактности и полноты.
- Доказать основные теоремы о пределах.
- Доказать существование первого замечательного предела.
- Доказать существование второго замечательного предела.
- Непрерывность функции. Доказать критерий непрерывности.
- Сравнение функции в окрестности точки. Доказать формулы эквивалентности.
- Производная функции (определение. Геометрический и физический смысл). Доказать правила дифференцирования.
- Доказать теоремы о производной композиции функции, производная обратной функции и производной функции, заданной параметрически.
- Доказать формулы для производных основных элементарных функций.
- Дифференциал функции. Геометрический смысл производной и дифференциала.
- Геометрический смысл дифференциала
- Дифференциал функции
- Физический смысл дифференциала
- Первообразная и неопределенный интеграл. Доказать свойства неопределенного интеграла.
- Доказать теоремы Лагранжа, Коши и Лопиталя.
- Доказать формулу Тейлора.
- Монотонность и экстремумы функции. Доказать необходимое и достаточное условие.
- Выпуклость функци. Доказать необходимое и дотаточное условие для точки перегиба функции.
- Конструкция определенного интеграла Римана.
- Доказать свойства определенного интеграла и формулу Ньютона-Лейбница. Не Формула Ньютона-Лейбница
- Несобственные интегралы первого рода. Признаки сходимости.
- Несобственные интегралы второго рода. Признаки сходимости.