6.2. Постановка задачи динамического программирования. Основные условия и область применения.
В ряде реальных экономических и производственных задач необходимо учитывать изменение моделируемого процесса во времени и влияние времени на критерий оптимальности. Для решения указанных задач используется метод динамического планирования (программирования). Этот метод более сложен по сравнению с методами расчета статических оптимизационных задач. Также не простым делом является процесс построения для реальной задачи математической модели динамическою программирования.
Пусть рассматривается задача, распадающаяся на m шагов или этапов, например планирование деятельности предприятия на несколько лет, поэтапное планирование инвестиций, управление производственными мощностями в течение длительного срока. Показатель эффективности задачи в целом обозначим через W, а показатели эффективности на отдельных шагах - через i, i=1, m. Если W обладает свойством аддитивности, т.е.:
(6.3)
можно найти оптимальное решение задачи методом динамического программирования.
Таким образом, динамическое программирование - это метод оптимизации многошаговых или многоэтапных процессов, критерий эффективности которых обладает свойством (6.3).
В задачах динамического программирования критерий эффективности называется выигрышем. Данные процессы управляемые, и от правильного выбора управления зависит величина выигрыша.
Переменная хi, от которой зависят выигрыш на i-м шаге и, следовательно, выигрыш в целом, называются шаговым управлением i=1, m.
Управлением процесса в целом (х) называется последовательность шаговых управлений х=(х1, х2, ..., хi, ..., хm).
Оптимальное управление х - это значение управления х, при котором значение W(x) является максимальным (или минимальным, если требуется уменьшить проигрыш)
W=W(x)=max W(x)
xX, (6.4)
где X - область допустимых управлений.
Oптимальное управление xопределяется последовательностью оптимальных шаговых управлений: x = (x1, x, ..., xi, ..., xm).
В основе метода динамического программирования лежит принцип оптимальности Беллмана, формулирующийся следующим образом: управление на каждом шаге надо выбирать так, чтобы оптимальной была сумма выигрышей на всех оставшихся до конца процесса шагах, включая выигрыш на данном шаге.
Поясним это правило. При решении задач динамического программирования на каждом шаге выбирается управление, которое должно привести к оптимальному выигрышу. если считать все шаги независимыми друг от друга, то оптимальным шаговым управлением будет то управление, которое приносит максимальный выигрыш именно на данном шаге. Но, например, при покупке новой техники взамен устаревшей, на ее приобретение затрачиваются определенные средства. Поэтому прибыль от ее эксплуатации вначале может быть небольшой. Однако в следующие годы новая техника будет приносить большую прибыль. И наоборот, если руководитель примет решение оставить старую технику для получения прибыли в текущем году, то в дальнейшем это приведет к значительным убыткам. Данный пример демонстрирует следующий факт: в многошаговых процессах все шаги зависят друг от друга, и, следовательно, управление на каждом конкретном шаге надо выбирать, с учетом его будущих воздействий на весь процесс.
Другой момент, который следует учитывать при выборе управления на данном шаге, - это возможные варианты окончания предыдущего шага. Эти варианты определяют состояние процесса. Например, при определении количества средств в i-ом году, необходимо знать, сколько средств осталось в наличии к этому году, и какая прибыль получена в предыдущем (i-1)-ом году.
- 1. Моделирование экономических систем. Основные понятия и определения.
- 1.1. Возникновение и развитие системных представлений
- 1.2. Модели и моделирование. Классификация моделей
- В настоящее время для постижения истины существует 3 пути:
- 1.3. Виды подобия моделей
- 1.4. Адекватность моделей
- 2. Математические модели и методы их расчета
- 2.1. Понятие операционного исследования
- Выбор задачи - важнейший вопрос. Какие основные требования должна удовлетворять задача? Таких требований два:
- Можно выделить следующие основные этапы операционного исследования:
- 2.2. Классификация и принципы построения математических моделей Можно выделить следующие основные этапы построения математической модели:
- Перечислим некоторые основные принципы построения математической модели:
- 3. Некоторые сведения из математики
- 3.1. Выпуклые множества
- 3.2. Линейные неравенства
- 3.3. Значения линейной формы на выпуклом множестве
- 4. Примеры задач линейного программирования
- 4.1. Транспортная задача
- 4.2. Общая формулировка задачи линейного программирования
- Дана система линейных уравнений:
- 4.3. Графическая интерпретация решения задач линейного программирования
- Возможны следующие варианты:
- 5. Методы решения задач линейного программирования
- 5.1. Общая и основная задачи линейного программирования
- 5.2. Геометрический метод решения задач линейного программирования
- Тот факт, что оптимальное решение находится в одной из вершин многоугольника одр, позволяет сделать еще два важных вывода:
- Этапы нахождения решения задачи линейного программирования:
- 5.3. Графическое решение задачи распределения ресурсов
- Составим математическую модель задачи.
- Метод решения задачи линейного программирования:
- Тот факт, что оптимальное решение находится на вершине одр, дает еще два очень важных вывода:
- 5.4. Симплексный метод
- Симплексная таблица строится следующим образом:
- 5.5. Анализ симплекс-таблиц
- 5.6. Решение транспортных задач
- 6. Методы нелинейного программирования и многокритериальной оптимизации
- 6.1. Постановка задачи нелинейного программирования
- 6.2. Постановка задачи динамического программирования. Основные условия и область применения.
- Таким образом, при выборе шагового управления необходимо учитывать:
- 6.3. Многокритериальная оптимизация
- Три основные части задачи многокритериальной оптимизации:
- Математические методы определения экспертных оценок: