3.1. Выпуклые множества
Предварительно дадим некоторые понятия, весьма важные для линейного программирования.
множество точек называется выпуклыми, если оно вместе с любыми двумя точками содержит отрезок, соединяющий эти точки. Простейшими примерами выпуклых множеств могут служить: отрезок, треугольник, квадрат, некоторые геометрические тела, например, пирамида, куб и т.д.
заметим, что выпуклый многоугольник обладает тем свойством, что весь расположен по одну сторону каждой из прямых, участвующих в ее образовании.
выпуклой линейной комбинацией точек М1, М2, ... Мn называется любая точка М такая, что:
М=a1M1+a2M2 + ... +anMn,
где ai 0 и a1+a2+ ... +an=1.
Обобщая сказанное выше, можно сказать, что множество точек называется выпуклым, если вместе с любыми своими точками оно содержит и выпуклую произвольную комбинацию этих точек. Поскольку произвольная точка отрезка представляет собой выпуклую комбинацию его концов, то это и означает, что выпуклое множество вместе с двумя данными точками содержит весь соединяющий их отрезок.
Очевидно, что всякая точка выпуклого многоугольника, лежащая внутри его или на одной из сторон, за исключением вершин, может быть представлена как выпуклая линейная комбинация других точек этого многоугольника. Напротив, вершины многоугольника не представляются в виде выпуклой комбинации двух каких-нибудь других точек. В этом смысле вершины многоугольника называют экстремальными точками.
прямая линия называется опорной, если она имеет с выпуклым многоугольником, по крайней мере, одну общую точку и весь многоугольник расположен по одну сторону от этой прямой. Через каждую из вершин многоугольника можно провести бесконечное множество опорных линий. В пространстве трех измерений, по аналогии с понятием опорной прямой вводится понятие опорной плоскости.
Опорной плоскостью называется всякая плоскость, имеющая с выпуклым многогранником, по крайней мере, одну общую точку, причем такую, что весь многогранник расположен по одну сторону от нее. Опорная плоскость может иметь с выпуклым многогранником общую точку (вершину многогранника), прямую (ребро), и, наконец, общую грань.
- 1. Моделирование экономических систем. Основные понятия и определения.
- 1.1. Возникновение и развитие системных представлений
- 1.2. Модели и моделирование. Классификация моделей
- В настоящее время для постижения истины существует 3 пути:
- 1.3. Виды подобия моделей
- 1.4. Адекватность моделей
- 2. Математические модели и методы их расчета
- 2.1. Понятие операционного исследования
- Выбор задачи - важнейший вопрос. Какие основные требования должна удовлетворять задача? Таких требований два:
- Можно выделить следующие основные этапы операционного исследования:
- 2.2. Классификация и принципы построения математических моделей Можно выделить следующие основные этапы построения математической модели:
- Перечислим некоторые основные принципы построения математической модели:
- 3. Некоторые сведения из математики
- 3.1. Выпуклые множества
- 3.2. Линейные неравенства
- 3.3. Значения линейной формы на выпуклом множестве
- 4. Примеры задач линейного программирования
- 4.1. Транспортная задача
- 4.2. Общая формулировка задачи линейного программирования
- Дана система линейных уравнений:
- 4.3. Графическая интерпретация решения задач линейного программирования
- Возможны следующие варианты:
- 5. Методы решения задач линейного программирования
- 5.1. Общая и основная задачи линейного программирования
- 5.2. Геометрический метод решения задач линейного программирования
- Тот факт, что оптимальное решение находится в одной из вершин многоугольника одр, позволяет сделать еще два важных вывода:
- Этапы нахождения решения задачи линейного программирования:
- 5.3. Графическое решение задачи распределения ресурсов
- Составим математическую модель задачи.
- Метод решения задачи линейного программирования:
- Тот факт, что оптимальное решение находится на вершине одр, дает еще два очень важных вывода:
- 5.4. Симплексный метод
- Симплексная таблица строится следующим образом:
- 5.5. Анализ симплекс-таблиц
- 5.6. Решение транспортных задач
- 6. Методы нелинейного программирования и многокритериальной оптимизации
- 6.1. Постановка задачи нелинейного программирования
- 6.2. Постановка задачи динамического программирования. Основные условия и область применения.
- Таким образом, при выборе шагового управления необходимо учитывать:
- 6.3. Многокритериальная оптимизация
- Три основные части задачи многокритериальной оптимизации:
- Математические методы определения экспертных оценок: