logo
Лекции Методы оптимальных решений

6.2. Постановка задачи динамического программирования. Основные условия и область применения.

В ряде реальных экономических и производственных задач необходимо учитывать изменение моделируемого процесса во времени и влияние времени на критерий оптимальности. Для решения указанных задач используется метод динамического планирования (программирования). Этот метод более сложен по сравнению с методами расчета статических оптимизационных задач. Также не простым делом является процесс построения для реальной задачи математической модели динамическою программирования.

Пусть рассматривается задача, распадающаяся на m шагов или этапов, например планирование деятельности предприятия на несколько лет, поэтапное планирование инвестиций, управление производственными мощностями в течение длительного срока. Показатель эффективности задачи в целом обозначим через W, а показатели эффективности на отдельных шагах - через i, i=1, m. Если W обладает свойством аддитивности, т.е.:

(6.3)

можно найти оптимальное решение задачи методом динамического программирования.

 Таким образом, динамическое программирование - это метод оптимизации многошаговых или многоэтапных процессов, критерий эффективности которых обладает свойством (6.3).

 В задачах динамического программирования критерий эффективности называется выигрышем. Данные процессы управляемые, и от правильного выбора управления зависит величина выигрыша.

 Переменная хi, от которой зависят выигрыш на i-м шаге и, следовательно, выигрыш в целом, называются шаговым управлением i=1, m.

Управлением процесса в целом (х) называется последовательность шаговых управлений х=(х1, х2, ..., хi, ..., хm).

Оптимальное управление х - это значение управления х, при котором значение W(x) является максимальным (или минимальным, если требуется уменьшить проигрыш)

W=W(x)=max W(x)

xX, (6.4)

где X - область допустимых управлений.

Oптимальное управление xопределяется последовательностью оптимальных шаговых управлений: x = (x1, x, ..., xi, ..., xm).

 В основе метода динамического программирования лежит принцип оптимальности Беллмана, формулирующийся следующим образом: управление на каждом шаге надо выбирать так, чтобы оптимальной была сумма выигрышей на всех оставшихся до конца процесса шагах, включая выигрыш на данном шаге.

Поясним это правило. При решении задач динамического программирования на каждом шаге выбирается управление, которое должно привести к оптимальному выигрышу. если считать все шаги независимыми друг от друга, то оптимальным шаговым управлением будет то управление, которое приносит максимальный выигрыш именно на данном шаге. Но, например, при покупке новой техники взамен устаревшей, на ее приобретение затрачиваются определенные средства. Поэтому прибыль от ее эксплуатации вначале может быть небольшой. Однако в следующие годы новая техника будет приносить большую прибыль. И наоборот, если руководитель примет решение оставить старую технику для получения прибыли в текущем году, то в дальнейшем это приведет к значительным убыткам. Данный пример демонстрирует следующий факт: в многошаговых процессах все шаги зависят друг от друга, и, следовательно, управление на каждом конкретном шаге надо выбирать, с учетом его будущих воздействий на весь процесс.

Другой момент, который следует учитывать при выборе управления на данном шаге, - это возможные варианты окончания предыдущего шага. Эти варианты определяют состояние процесса. Например, при определении количества средств в i-ом году, необходимо знать, сколько средств осталось в наличии к этому году, и какая прибыль получена в предыдущем (i-1)-ом году.