Дана система линейных уравнений:
а11x1+а12x2+ ... +а1nxn = b1
а21x1+а22x2+ ... +а2nxn = b2
(I)... ... ... ... ... ... ... ...
аm1x1+аm2x2+ ... +аmnxn = bm
и линейная функция =c1x1+c2x2+ ... +cnxn (II).
Требуется найти такие неотрицательные решения х1 0, х2 0 ... хn 0 (III) системы (I) при которых функция принимает наименьшее (наибольшее) значение.
Уравнения (I) называются ограничениями данной задачи, уравнение (II) называется линейной формой, а уравнение (III), строго говоря, тоже являются ограничениями, однако их не принято так называть, поскольку они являются общими для всех задач линейного программирования, а не только конкретной задачи. Любое неотрицательное решение системы уравнений называется допустимым. Допустимое решение, дающее минимум функции , оптимальное решение (если оно существует) не обязательно единственно; возможны случаи, когда имеется бесчисленное множество оптимальных решений. Наконец, саму функцию часто называют линейной формой или функцией цели.
Казалось бы, т.к. задача линейного программирования ставится как задача минимизации некоторой функции , то можно применить классический прием дифференциального исчисления. Однако частные производные равны коэффициентам при неизвестных, которые в «нуль» одновременно не обращаются.
- 1. Моделирование экономических систем. Основные понятия и определения.
- 1.1. Возникновение и развитие системных представлений
- 1.2. Модели и моделирование. Классификация моделей
- В настоящее время для постижения истины существует 3 пути:
- 1.3. Виды подобия моделей
- 1.4. Адекватность моделей
- 2. Математические модели и методы их расчета
- 2.1. Понятие операционного исследования
- Выбор задачи - важнейший вопрос. Какие основные требования должна удовлетворять задача? Таких требований два:
- Можно выделить следующие основные этапы операционного исследования:
- 2.2. Классификация и принципы построения математических моделей Можно выделить следующие основные этапы построения математической модели:
- Перечислим некоторые основные принципы построения математической модели:
- 3. Некоторые сведения из математики
- 3.1. Выпуклые множества
- 3.2. Линейные неравенства
- 3.3. Значения линейной формы на выпуклом множестве
- 4. Примеры задач линейного программирования
- 4.1. Транспортная задача
- 4.2. Общая формулировка задачи линейного программирования
- Дана система линейных уравнений:
- 4.3. Графическая интерпретация решения задач линейного программирования
- Возможны следующие варианты:
- 5. Методы решения задач линейного программирования
- 5.1. Общая и основная задачи линейного программирования
- 5.2. Геометрический метод решения задач линейного программирования
- Тот факт, что оптимальное решение находится в одной из вершин многоугольника одр, позволяет сделать еще два важных вывода:
- Этапы нахождения решения задачи линейного программирования:
- 5.3. Графическое решение задачи распределения ресурсов
- Составим математическую модель задачи.
- Метод решения задачи линейного программирования:
- Тот факт, что оптимальное решение находится на вершине одр, дает еще два очень важных вывода:
- 5.4. Симплексный метод
- Симплексная таблица строится следующим образом:
- 5.5. Анализ симплекс-таблиц
- 5.6. Решение транспортных задач
- 6. Методы нелинейного программирования и многокритериальной оптимизации
- 6.1. Постановка задачи нелинейного программирования
- 6.2. Постановка задачи динамического программирования. Основные условия и область применения.
- Таким образом, при выборе шагового управления необходимо учитывать:
- 6.3. Многокритериальная оптимизация
- Три основные части задачи многокритериальной оптимизации:
- Математические методы определения экспертных оценок: