Симплексная таблица строится следующим образом:
В заглавной строке пишем последовательно векторы B, A1, A2, A3, A4 , A5. Слева добавляем колонку «Базисные векторы», рядом с ней колонку «С», в которой поставлены коэффициенты при базисных переменных в линейной форме, в данном случае величины С3, С4, С5. В последней строке, называемой индексной, и обозначаемой через j-Сj, проставляются числа, равные значению линейной формы, в соответствием с уравнением (j=1, 2, 3, 4, 5). В итоге мы имеем таблицу 5.3.
Таблица 5.3.
Базисные | Коэффициенты | Вектор свободных | 3 | 4 | 0 | 0 | 0 |
векторы | линейной формы С | членов В | A1 | A2 | A3 | A4 | A5 |
A3 | 0 | 56 | 4 | 9 | 1 | 0 | 0 |
A4 | 0 | 37 | 5 | 3 | 0 | 1 | 0 |
A5 | 0 | 2 | -1 | 2 | 0 | 0 | 1 |
Индексная строка j-Сj | 0 | -3 | -4 | 0 | 0 | 0 |
Это первая симплексная таблица, соответствующая первому базисному решению: x1=0; x2=0; x3=56; x4=37; x5=2. Значение линейной формы, равное нулю, мы записываем в первой клетке индексной строки.
Т.к. мы решаем задачу на максимум, то из выражения линейной формы видно, что имеет смысл увеличить x1 или x2. Действительно, коэффициенты при этих переменных в скобках отрицательны (а по существу положительны), и если мы положим x10 или x20, то значение увеличится. Но эти же коэффициенты с их знаками стоят в индексной строке.
Итак, мы приходим к следующему выводу: наличие в индексной строке отрицательных чисел при решении задачи на максимум свидетельствует о том, что нами оптимальное решение не получено, и то, что от табл. 5.3 надо перейти к следующей.
Переход к новой таблице, т.е. к новой улучшенной программе осуществляем следующим способом: в индексной строке находим наибольшее по абсолютному значению отрицательное (а при задаче на минимум - наибольшее положительное) число. В нашем примере этим числом будет - 4. Найденное число определяет ведущий или ключевой столбец. Затем мы делим свободные члены на положительные элементы ведущего столбца и выбираем из полученных отношений наименьшее. Наименьшее отношение определяет ведущую строку. В данном случае имеем:
Таким образом, ведущей строкой будет строка A5. На пересечении ведущего столбца и ведущей строки стоит разрешающий элемент. В нашем случае - это число 2.
Теперь мы приступаем к составлению второй таблицы или второго плана. Вместо единичного вектора A5 мы в базис вводим вектор A2. Переход к новому базису, как это известно, эквивалентен элементарному преобразованию матрицы, элементами которой служат числа табл. 5.3. А именно: в новой таблице элемент строки, соответствующий элементу ведущей строки прежней таблицы, равен этому элементу ведущей строки, разделенному на разрешающий элемент. чтобы получить любой другой элемент новой симплексной таблицы, нужно от соответствующего элемента прежней таблицы отнять произведение элемента ведущей строки на элемент ведущего столбца, разделенное на разрешающий элемент. Например, элементу 4 (табл. 5.3) будет соответствовать элемент табл. 5.4:
Таким образом, мы переходим ко второй таблице (таблица 5.4). Указанные выше преобразования относятся к столбцам B, A1, A2, A3, A4 , A5.
Таблица 5.4.
Базисные | Коэффициенты | Вектор свободных | 3 | 4 | 0 | 0 | 0 |
векторы | линейной формы С | членов В | A1 | A2 | A3 | A4 | A5 |
A3 | 0 | 47 | 17/2 | 0 | 1 | 0 | -9/2 |
A4 | 0 | 34 | 13/2 | 0 | 0 | 1 | -3/2 |
A5 | 4 | 1 | -1/2 | 1 | 0 | 0 | 1/2 |
Индексная строка j-Сj | 4 | -5 | 0 | 0 | 0 | 2 |
Из табл. 5.4 видно, что значение линейной формы возросло и теперь равно 4. Однако наличие в индексной строке отрицательных чисел свидетельствует о том, что это значение еще можно увеличить. Переходим к следующей симплексной таблице. число «5» определяет ведущий столбец. Находим ведущую строку. Для этого определяем:
Итак, разрешающим элементом будет 13/2. Вектор A4 выводим из базиса и вводим вместо него вектор A1. Пересчет коэффициентов осуществляем по указанным выше правилам и получаем таблицу 5.5.
Таблица 5.5
Базисные | Коэффициенты | Вектор свободных | 3 | 4 | 0 | 0 | 0 |
векторы | линейной формы С | членов В | A1 | A2 | A3 | A4 | A5 |
A3 | 0 | 33/13 | 0 | 0 | 1 | -17/13 | -33/13 |
A1 | 3 | 68/13 | 1 | 0 | 0 | 2/13 | -3/13 |
A2 | 4 | 47/13 | 0 | 1 | 0 | 1/13 | 5/13 |
Индексная строка j-Сj | 392/13 | 0 | 0 | 0 | 10/13 | 11/13 |
В индексной строке нет отрицательных элементов. Следовательно, мы получим оптимальную программу. Оптимальное решение:
x1=68/13; x2=47/13; x3=33/13; x4 = x5 = 0.
- 1. Моделирование экономических систем. Основные понятия и определения.
- 1.1. Возникновение и развитие системных представлений
- 1.2. Модели и моделирование. Классификация моделей
- В настоящее время для постижения истины существует 3 пути:
- 1.3. Виды подобия моделей
- 1.4. Адекватность моделей
- 2. Математические модели и методы их расчета
- 2.1. Понятие операционного исследования
- Выбор задачи - важнейший вопрос. Какие основные требования должна удовлетворять задача? Таких требований два:
- Можно выделить следующие основные этапы операционного исследования:
- 2.2. Классификация и принципы построения математических моделей Можно выделить следующие основные этапы построения математической модели:
- Перечислим некоторые основные принципы построения математической модели:
- 3. Некоторые сведения из математики
- 3.1. Выпуклые множества
- 3.2. Линейные неравенства
- 3.3. Значения линейной формы на выпуклом множестве
- 4. Примеры задач линейного программирования
- 4.1. Транспортная задача
- 4.2. Общая формулировка задачи линейного программирования
- Дана система линейных уравнений:
- 4.3. Графическая интерпретация решения задач линейного программирования
- Возможны следующие варианты:
- 5. Методы решения задач линейного программирования
- 5.1. Общая и основная задачи линейного программирования
- 5.2. Геометрический метод решения задач линейного программирования
- Тот факт, что оптимальное решение находится в одной из вершин многоугольника одр, позволяет сделать еще два важных вывода:
- Этапы нахождения решения задачи линейного программирования:
- 5.3. Графическое решение задачи распределения ресурсов
- Составим математическую модель задачи.
- Метод решения задачи линейного программирования:
- Тот факт, что оптимальное решение находится на вершине одр, дает еще два очень важных вывода:
- 5.4. Симплексный метод
- Симплексная таблица строится следующим образом:
- 5.5. Анализ симплекс-таблиц
- 5.6. Решение транспортных задач
- 6. Методы нелинейного программирования и многокритериальной оптимизации
- 6.1. Постановка задачи нелинейного программирования
- 6.2. Постановка задачи динамического программирования. Основные условия и область применения.
- Таким образом, при выборе шагового управления необходимо учитывать:
- 6.3. Многокритериальная оптимизация
- Три основные части задачи многокритериальной оптимизации:
- Математические методы определения экспертных оценок: