6.1. Постановка задачи нелинейного программирования
В общем виде задача нелинейного программирования (ЗНП) формируется следующим образом:
f (x1, x2, ..., xn) max (min) (6.1)
gi (x1, x2 ..., xn bi, i=1, m1
gi (x1, x2 ..., xn bi, i=m1+1, m2
(6.2) ... ... ... ... ... ... ... ... ... ... ...
gi (x1, x2 ..., xn bi, i=m2+1, m2
где xj - управляющие переменные или решения ЗНП, j=1, n;
bi - фиксированные параметры, i=1, m;
f, gi, i=1, n - заданные функции от n переменных.
Если f и gi линейны, то (6.1), (6.2) проходит в задачу линейного программирования.
Решить задачу нелинейного программирования - это значит найти такие значения управляющих переменных xj, j=1, n, которые удовлетворяют системе ограничений (6.2) и доставляют максимум или минимум функции f.
Для задачи нелинейного программирования, в отличие от линейных задач, нет единого решения. В зависимости от вида целевой функции (6.1) и ограничений (6.2) разработано несколько специальных методов решения, к которым относятся методы множителей Лагранжа, квадратичное и выпуклое программирование, градиентные методы, ряд приближенных методов решения, графический метод. Заметим, что нелинейное моделирование экономических задач часто бывает довольно искусственным. Большая часть экономических проблем сводится к линейным моделям.
- 1. Моделирование экономических систем. Основные понятия и определения.
- 1.1. Возникновение и развитие системных представлений
- 1.2. Модели и моделирование. Классификация моделей
- В настоящее время для постижения истины существует 3 пути:
- 1.3. Виды подобия моделей
- 1.4. Адекватность моделей
- 2. Математические модели и методы их расчета
- 2.1. Понятие операционного исследования
- Выбор задачи - важнейший вопрос. Какие основные требования должна удовлетворять задача? Таких требований два:
- Можно выделить следующие основные этапы операционного исследования:
- 2.2. Классификация и принципы построения математических моделей Можно выделить следующие основные этапы построения математической модели:
- Перечислим некоторые основные принципы построения математической модели:
- 3. Некоторые сведения из математики
- 3.1. Выпуклые множества
- 3.2. Линейные неравенства
- 3.3. Значения линейной формы на выпуклом множестве
- 4. Примеры задач линейного программирования
- 4.1. Транспортная задача
- 4.2. Общая формулировка задачи линейного программирования
- Дана система линейных уравнений:
- 4.3. Графическая интерпретация решения задач линейного программирования
- Возможны следующие варианты:
- 5. Методы решения задач линейного программирования
- 5.1. Общая и основная задачи линейного программирования
- 5.2. Геометрический метод решения задач линейного программирования
- Тот факт, что оптимальное решение находится в одной из вершин многоугольника одр, позволяет сделать еще два важных вывода:
- Этапы нахождения решения задачи линейного программирования:
- 5.3. Графическое решение задачи распределения ресурсов
- Составим математическую модель задачи.
- Метод решения задачи линейного программирования:
- Тот факт, что оптимальное решение находится на вершине одр, дает еще два очень важных вывода:
- 5.4. Симплексный метод
- Симплексная таблица строится следующим образом:
- 5.5. Анализ симплекс-таблиц
- 5.6. Решение транспортных задач
- 6. Методы нелинейного программирования и многокритериальной оптимизации
- 6.1. Постановка задачи нелинейного программирования
- 6.2. Постановка задачи динамического программирования. Основные условия и область применения.
- Таким образом, при выборе шагового управления необходимо учитывать:
- 6.3. Многокритериальная оптимизация
- Три основные части задачи многокритериальной оптимизации:
- Математические методы определения экспертных оценок: