NAChERTALKA_ShPORY_TEORIYa(1)
17.Какая задача считается основной позиционной задачей.
Под позиционными задачами будем понимать задачи по определению общих элементов геометрических фигур. К ним относятся задачи на принадлежность и задачи на пересечение геометрических фигур.
Задачами на принадлежность являются задачи на построение проекций: точек на линии или поверхности, линий на поверхности, линий и поверхностей, проходящих через заданные точки и линии.
ПЕРВАЯ ПОЗИЦИОННАЯ ЗАДАЧА
(ПОСТРОЕНИЕ ТОЧЕК ПЕРЕСЕЧЕНИЯ ЛИНИИ И ПОВЕРХНОСТИ)
Содержание
- 7. Какие существуют стандартизированные аксонометрические проекции?
- 16.Теорема о проецировании прямого угла.
- 17.Какая задача считается основной позиционной задачей.
- 18.Как располагаются проекции плоскостей в разных случаях.
- 20. Как на основе теории о проекции прямого угла можно строить эпюры двух перпендикулярных между собой прямых, либо прямой и плоскости или двух плоскостей.
- 21.Что такое метод преобразования проекций и какие способы сущ-ют.
- 22.Для решения каких задач применяются (примеры).
- 23.Как строятся сечения многогранника плоскостью и точек пересечения прямой с поверхностью многогранника.
- 25.Что такое плоские и пространственные кривые.(примеры)
- 26.Какие особые точки на кривой и почему они особенные?
- 28.Что такое поверхность и как она образуется с точки зрения начертательной геометрии
- 29.Что такое определитель поверхности.
- 30.При каких условиях поверхность считается заданной на чертеже
- 31.Виды поверхностей.
- 32Что такое поверхности вращения.
- 33.Какие позиционные задачи сущ-ют.
- 34Способ секущих плоскостей
- 34Способ сфер
- 35.Какие поверхности являются развертывающимися.