logo search
Курс лекций ВМ (I семестр)

Введение Лекция 1. Основы математической логики

Основные понятия, включенные в систему тренинг-тестирования:

Доказательное рассуждение; правдоподобное рассуждение; математическая индукция; обобщение; специализация; аналогия; логическая связка; отрицание; дизъюнкция; конъюнкция; импликация; эквиваленция.

Знания за пределами математики и доказательной логики состоят из предположений. Предположения, составляющие математические знания, закрепляются доказательными рассуждениями и подкрепляются правдоподобными рассуждениями. Математическое доказательство является доказательным рассуждением, косвенные улики юриста, индуктивные доводы физика, статистические доводы экономиста относятся к правдоподобным рассуждениям. Доказательное рассуждение надежно, неоспоримо, окончательно. Правдоподобное рассуждение рискованно, спорно, условно.

Доказательное рассуждение имеет жесткие стандарты, кодифицированные и выясненные логикой, являющейся теорией доказательных рассуждений. Стандарты правдоподобных рассуждений текучи и нет никакой теории таких рассуждений, которая могла бы сравниться с доказательной логикой или обладала бы сравнимой с ней согласованностью.

Доказательные рассуждения. Все новые знания о мире связаны с правдоподобными рассуждениями.

Доказательное рассуждение и правдоподобное рассуждение не противоречат друг другу; они, напротив, друг друга дополняют. В строгом рассуждении главное – отличать доказательство от догадки, обоснованное доказательство от необоснованной попытки. В правдоподобном рассуждении главное ­– отличать одну догадку от другой, более разумную догадку от менее разумной.

Часто математические утверждения касаются бесконечного множества объектов и перебрать эти объекты невозможно. Такой перебор можно заменить следующим методом рассуждения: если данное утверждение истинно в одном случае, то оно окажется истинным и в следующем за ним случае, а значит и во всех случаях. Такой метод рассуждения называется методом математической индукции.

Обобщение есть переход от рассмотрения данного множества предметов к рассмотрению большего множества, содержащего данное. Обобщение часто делается при переходе от одного предмета к целому классу, содержащему этот предмет.

Специализация есть переход от рассмотрения данного множества предметов к рассмотрению меньшего множества, содержащегося в данном. Специализация часто производится при переходе от целого класса предметов к одному предмету, содержащемуся в этом классе.

Аналогия. Две системы аналогичны, если они согласуются в ясно определенных отношениях соответствующих частей. Это отношение имеет ясный смысл, если отношения управляются одними и теми же законами.

Далее приводятся некоторые основные факты математической логики, которую еще называют формальной логикой. Формальной потому, что она позволяет проверить правильность рассуждений независимо от их содержания. Цепочки рассуждений в совершенно разных областях математики и других наук можно одинаково опи­сать на языке логики и убедиться в их справедливости или ошибоч­ности.