5.4.1 Применения преобразования Фурье
Преобразование Фурье используется во многих областях науки — в физике, теории чисел, комбинаторике, обработке сигналов, теории вероятности, статистике, криптографии, акустике, океанологии, оптике, геометрии, и многих других. (В обработке сигналов и связанных областях преобразование Фурье обычно рассматривается как декомпозиция сигнала на частоты и амплитуды.) Богатые возможности применения основываются на нескольких полезных свойствах преобразования:
Преобразования являются линейными операторами и, с соответствующей нормализацией, также являются унитарными (свойство, известное как теорема Парсеваля или, в более общем случае как теорема Планшереля, или в наиболее общем как дуализм Понтрягина).
Преобразования обратимы, причем обратное преобразование имеет практически такую же форму, как и прямое преобразование.
Синусоидальные базисные функции являются собственными функциями дифференцирования, что означает, что данное представление превращает линейные дифференциальные уравнения с постоянными коэффициентами в обычные алгебраические. (Например, в линейной стационарной системе частота — консервативная величина, поэтому поведение на каждой частоте может решаться независимо.)
По теореме о свёртке, преобразование Фурье превращает сложную операцию свертки в простое умножение, что означает, что они обеспечивают эффективный способ вычисления основанных на свёртке операций, таких как умножение многочленов и умножение больших чисел.
Дискретная версия преобразования Фурье может быстро рассчитываться на компьютерах, используя алгоритм быстрого преобразования Фурье (БПФ, англ. FFT).
- Министерство образования и науки Российской Федерации
- Оглавление
- Лекция № 1
- 1. Особенности математических вычислений, реализуемых на эвм: теоретические основы численных методов: погрешности вычислений
- 1.1. Дискретизация
- 1.3. Погрешность
- 1.4. Устойчивость и сложность алгоритма (по памяти, по времени)
- 2.1. Основные понятия линейной алгебры. Классификация методов решения
- 2.2. Метод исключения Гаусса. Вычисление определителя и обратной матрицы методом исключения
- 2.3. Численные методы решения линейных уравнений
- 2.3.1. Метод прогонки
- 2.3.2. Итерационные методы
- 3.1. Решение нелинейных уравнений
- 3.1.1. Метод половинного деления
- 3.1.2. Метод простой итерации
- 3.1.3. Метод Ньютона
- 3.1.4. Метод секущих
- 3.1.5. Метод парабол
- 3.2. Методы решения нелинейных систем уравнений
- 4.1.Функция и способы ее задания
- 4.2 Основные понятия теории приближения функций
- 4.3 Интерполяция функций
- 4.3.1 Интерполирование с помощью многочленов
- 4.3.2 Погрешность интерполяционных методов
- 4.3.3 Интерполяционный многочлен Лагранжа
- 4.3.4 Конечные разности
- 4.3.5 Интерполяционные многочлены Стирлинга и Бесселя
- 4.3.6 Интерполяционные многочлены Ньютона
- 4.3.7 Разделенные разности
- 4.3.8 Интерполяционный многочлен Ньютона для произвольной сетки узлов
- 4.3.9 Итерационно-интерполяционный метод Эйткина
- 4.3.10 Интерполирование с кратными узлами
- 4.4 Равномерное приближение функций. Приближение методом наименьших квадратов
- 5.1. Численное дифференцирование
- 5.2. Формулы численного интегрирования
- 5.3. Решение обыкновенных дифференциальных уравнений. Метод конечных разностей для численного решения дифференциальных уравнений
- Интегрирование дифференциальных уравнений с помощью степенных рядов
- 5.4. Преобразование Фурье
- 5.4.1 Применения преобразования Фурье
- 5.4.2 Разновидности преобразования Фурье Непрерывное преобразование Фурье
- Ряды Фурье
- Дискретное преобразование Фурье
- Оконное преобразование Фурье
- Другие варианты
- 5.4.3 Интерпретация в терминах времени и частоты
- 5.4.4 Таблица важных преобразований Фурье
- Библиографический список