9.3.2. Представление бинарных деревьев
Обозначим через n(р) объем памяти, занимаемой представлением бинарного дерева, где р — число узлов. Наиболее часто используются следующие представления бинарных деревьев.
Списочные структуры: каждый узел представляется записью типа N, содержащей два поля (l и r) с указателями на левый и правый узлы и еще одно поле i для хранения указателя на информацию об узле. Дерево представляется указателем на корень. Тип N обычно определяется следующим образом: N = record i : info; l, r : N end record. Для этого представления n(р) = Зр.
ЗАМЕЧАНИЕ -
Поскольку в бинарном дереве, как и в любом другом, q = р — 1, то из 2р указателей, отводимых для хранения дуг, р +1 всегда хранит значение nil, то есть половина связей не используется.
Упакованные массивы: все узлы располагаются в массиве, так что все узлы поддерева данного узла располагаются вслед за этим узлом. Вместе с каждым узлом хранится индекс узла, который является последним узлом поддерева данного узла. Дерево Т обычно определяется следующим образом:
Т : array[l..p] of record i : info, k : 1..p end record. Для этого представления n(р) = 2р.
Польская запись: аналогично, но вместо связей фиксируется «размеченная степень» каждого узла (например, 0 означает, что это лист, 1 — есть левая связь, но нет правой, 2 — есть правая связь, но нет левой, 3 — есть обе связи). Дерево Т определяется следующим образом:
Т: array [l..p] of record i : info, d : 0..3 end record.
Для этого представления п(р) = 1р. Если степень узлаизвестна из информации, хранящейся в самом узле, то можно не хранить и степень. Такой способ представления деревьев называется польской записью и обычно используется для представления выражений. В этом случае представление дерева оказывается наиболее компактным: объем памяти n(р) = р.
- Иркутский государственный технический университет
- 1. Определения графов
- 7.4.5. Массив дуг
- 8.4.2. Трансверсаль
- 8.5.4. Алгоритм нахождения максимального потока
- 8.6.3. Выделение компонент сильной связности
- 8.7.1. Длина дуг
- 8.7.2. Алгоритм Флойда
- 8.7.3. Алгоритм Дейкстры
- Глава 9 Деревья
- 9.1. Свободные деревья
- 9.1.1. Определения
- 9.1 .2. Основные свойства деревьев
- 9.2. Ориентированные, упорядоченные и бинарные деревья
- 9.2.1. Ориентированные деревья
- 9.2.2. Эквивалентное определение ордерева
- 9.2.3. Упорядоченные деревья
- 9.2.4. Бинарные деревья
- 9.3. Представление деревьев в эвм
- 9.3.1. Представление свободных, ориентированных и упорядоченных деревьев
- 9.3.2. Представление бинарных деревьев
- 9.3.3. Обходы бинарных деревьев
- 9.3.4. Алгоритм симметричного обхода бинарного дерева
- 9.4. Деревья сортировки
- 9.4.1. Ассоциативная память
- 9.4.2. Способы реализации ассоциативной памяти
- 9.4.3. Алгоритм бинарного (двоичного) поиска
- 9.4.4. Алгоритм поиска в дереве сортировки
- 9.4.5. Алгоритм вставки в дерево сортировки
- 9.4.6. Алгоритм удаления из дерева сортировки
- 9.4.7. Вспомогательные алгоритмы для дерева сортировки
- 9.4.8. Сравнение представлений ассоциативной памяти
- 9.4.9. Выровненные деревья
- 9.4.10. Сбалансированные деревья
- 9.5. Кратчайший остов
- 9.5.1. Определения
- 9.5.2. Схема алгоритма построения кратчайшего остова
- 9.5.3. Алгоритм Краскала
- Глава 10 Циклы
- 10.1. Фундаментальные циклы и разрезы
- 10.1.1. Циклы и коциклы
- 10.1.2. Независимые множества циклов и коциклов
- 10.1.3. Циклический и коциклический ранг
- 10.2. Эйлеровы циклы
- 10.2.1. Эйлеровы графы
- 10.2.2. Алгоритм построения эйлерова цикла в эйлеровом графе
- 10.2.3. Оценка числа эйлеровых графов
- 10.3. Гамильтоновы циклы
- 10.3.1. Гамильтоновы графы
- 10.3.2. Задача коммивояжера
- Глава 11 Независимость и покрытия
- 11.1. Независимые и покрывающие множества
- 11.1.1. Покрывающие множества вершин и ребер
- 11.1.2. Независимые множества вершин и ребер
- 11.1.3. Связь чисел независимости и покрытий
- 11.2. Построение независимых множеств вершин
- 11.2.1. Постановка задачи отыскания наибольшего независимого множества вершин
- 11.2.2. Поиск с возвратами
- 11.2.3. Улучшенный перебор
- 11.2.4. Алгоритм построения максимальных независимых множеств вершин
- 11.3. Доминирующие множества
- 11.3.1. Определения
- 11.3.2. Доминирование и независимость
- 11.3.3. Задача о наименьшем покрытии
- 11.3.4. Эквивалентные формулировки знп
- 11.3.5. Связь знп с другими задачами
- Глава 12 Раскраска графов
- 12.1. Хроматическое число
- Ух, . . . ,Vn одноцветные классы,доказательство
- 12.2. Планарность
- 12.2.2. Эйлерова характеристика
- 12.2.3. Теорема о пяти красках
- 12.3. Алгоритмы раскрашивания
- 12.3.1. Точный алгоритм раскрашивания
- 12.3.2. Приближенный алгоритм последовательного раскрашивания
- 12.3.3. Улучшенный алгоритм последовательного раскрашивания