11.2.4. Алгоритм построения максимальных независимых множеств вершин
Приведенный ниже алгоритм, обоснование которого дано в предыдущем разделе, строит все максимальные независимые множества вершин заданного графа.
Алгоритм 11.2. Построение максимальных независимых множеств
Вход: граф G(V, Е), заданный списками смежности Г[г>]
Выход: последовательность максимальных независимых множеств
k : - О { количество элементов в текущем независимом множестве }
S[k]: = 0 { S[k] — независимое множество из k вершин }
Q~ [k}: = 0 {Q~ [k] — множество вершин, использованных для расширения S[k] }
Q+ [fc]: = V { Q+ [k] — множество вершин, которые можно использовать для расширения
S(k}}
Ml :{ шаг вперед }
select v e Q+ [k] { расширяющая вершина }
S[k + 1]: = S[k] U {v} { расширенное множество }
Q~[k + l}: = Q~ [k] \T[v] { вершина v использована для расширения }
<2+[fc+l]: ~Q+[k]\(T[v]U{v}) { все вершины, смежные с v, не могут быть использованы
для расширения }
М2 : { проверка } for и Е Q~ [k] do
if T[u]r\Q+[k] =0 then goto M3 { можно возвращаться }
end if end for if g+[fc] = 0 then
if Q~[k] = 0 then yield S[k] { множество S[k] максимально }
end if
goto M3 { можно возвращаться } else
goto Ml { можно идти вперед } end if
M3 : { шаг назад } v : = last(S[fc]) { последний добавленный элемент }
S[fc]: = S[k + 1] - {v}
Q~ [k]: = Q~ [k] U {v} { вершина v уже добавлялась }
Q+[k]: = Q+[k]\{v}
if fc = 0&<2+[fc] = 0 then
stop { перебор завершен } ebe
goto M2 { переход на проверку } end if
Пример
Известная задача о восьми ферзях (расставить на шахматной доске 8 ферзей так, чтобы они не били друг друга) является задачей об отыскании максимальных независимых множеств. Действительно, достаточно представить доску в виде графа с 64 вершинами (соответствующими клеткам доски), которые смежны, если клетки находятся на одной вертикали, горизонтали или диагонали.
- Иркутский государственный технический университет
- 1. Определения графов
- 7.4.5. Массив дуг
- 8.4.2. Трансверсаль
- 8.5.4. Алгоритм нахождения максимального потока
- 8.6.3. Выделение компонент сильной связности
- 8.7.1. Длина дуг
- 8.7.2. Алгоритм Флойда
- 8.7.3. Алгоритм Дейкстры
- Глава 9 Деревья
- 9.1. Свободные деревья
- 9.1.1. Определения
- 9.1 .2. Основные свойства деревьев
- 9.2. Ориентированные, упорядоченные и бинарные деревья
- 9.2.1. Ориентированные деревья
- 9.2.2. Эквивалентное определение ордерева
- 9.2.3. Упорядоченные деревья
- 9.2.4. Бинарные деревья
- 9.3. Представление деревьев в эвм
- 9.3.1. Представление свободных, ориентированных и упорядоченных деревьев
- 9.3.2. Представление бинарных деревьев
- 9.3.3. Обходы бинарных деревьев
- 9.3.4. Алгоритм симметричного обхода бинарного дерева
- 9.4. Деревья сортировки
- 9.4.1. Ассоциативная память
- 9.4.2. Способы реализации ассоциативной памяти
- 9.4.3. Алгоритм бинарного (двоичного) поиска
- 9.4.4. Алгоритм поиска в дереве сортировки
- 9.4.5. Алгоритм вставки в дерево сортировки
- 9.4.6. Алгоритм удаления из дерева сортировки
- 9.4.7. Вспомогательные алгоритмы для дерева сортировки
- 9.4.8. Сравнение представлений ассоциативной памяти
- 9.4.9. Выровненные деревья
- 9.4.10. Сбалансированные деревья
- 9.5. Кратчайший остов
- 9.5.1. Определения
- 9.5.2. Схема алгоритма построения кратчайшего остова
- 9.5.3. Алгоритм Краскала
- Глава 10 Циклы
- 10.1. Фундаментальные циклы и разрезы
- 10.1.1. Циклы и коциклы
- 10.1.2. Независимые множества циклов и коциклов
- 10.1.3. Циклический и коциклический ранг
- 10.2. Эйлеровы циклы
- 10.2.1. Эйлеровы графы
- 10.2.2. Алгоритм построения эйлерова цикла в эйлеровом графе
- 10.2.3. Оценка числа эйлеровых графов
- 10.3. Гамильтоновы циклы
- 10.3.1. Гамильтоновы графы
- 10.3.2. Задача коммивояжера
- Глава 11 Независимость и покрытия
- 11.1. Независимые и покрывающие множества
- 11.1.1. Покрывающие множества вершин и ребер
- 11.1.2. Независимые множества вершин и ребер
- 11.1.3. Связь чисел независимости и покрытий
- 11.2. Построение независимых множеств вершин
- 11.2.1. Постановка задачи отыскания наибольшего независимого множества вершин
- 11.2.2. Поиск с возвратами
- 11.2.3. Улучшенный перебор
- 11.2.4. Алгоритм построения максимальных независимых множеств вершин
- 11.3. Доминирующие множества
- 11.3.1. Определения
- 11.3.2. Доминирование и независимость
- 11.3.3. Задача о наименьшем покрытии
- 11.3.4. Эквивалентные формулировки знп
- 11.3.5. Связь знп с другими задачами
- Глава 12 Раскраска графов
- 12.1. Хроматическое число
- Ух, . . . ,Vn одноцветные классы,доказательство
- 12.2. Планарность
- 12.2.2. Эйлерова характеристика
- 12.2.3. Теорема о пяти красках
- 12.3. Алгоритмы раскрашивания
- 12.3.1. Точный алгоритм раскрашивания
- 12.3.2. Приближенный алгоритм последовательного раскрашивания
- 12.3.3. Улучшенный алгоритм последовательного раскрашивания