9.5.2. Схема алгоритма построения кратчайшего остова
Рассмотрим следующую схему алгоритма построения кратчайшего остова. Пусть Т — множество непересекающихся деревьев, являющихся подграфами графа G. Вначале Т состоит из отдельных вершин графа G, в конце Т содержит единственный элемент — кратчайший остов графа G.
Алгоритм 9.6. Построение кратчайшего остова
Вход: граф G(V, E), заданный матрицей длин ребер С.
Выход: кратчайший остов Т.
T: = V
while в Т больше одного элемента do
взять любое поддерево из Т
найти к нему ближайшее
соединить эти деревья в Т
end while
ТЕОРЕМА Алгоритм 9.6 строит кратчайший остов.
доказательство
Пусть Ti и Tj — два произвольных поддерева G, Тi Tj 0. Положим
i,j:= .
Так как с самого начала все вершины G покрыты деревьями из Т, то i,j всегда реализуется на некотором ребре с длиной ci,j. Далее индукцией по шагам алгоритма 9.6 покажем, что все ребра, включенные в Т, принадлежат кратчайшему остову — SST. Вначале выбранных ребер нет, поэтому их множество включается в кратчайший остов. Пусть теперь все ребра, добавленные в Т, принадлежат SST. Рассмотрим очередной шаг алгоритма. Пусть на этом шаге добавлено ребро (i, j), соединяющее поддерево Тi с поддеревом Tj. Если (i, j) SST, то, поскольку SST является деревом и, стало быть, связен, (i*, j*) SST, соединяющее Ti с остальной частью SST. Тогда удалим из SST ребро (i*, j*) и добавим ребро (i, j): SST’ : = SST- (i*, j*) + (i, j). Полученный подграф SST’ является остовом, причем более коротким, чем SST, что противоречит выбору SST.
ЗАМЕЧАНИЕ
Различные способы выбора поддерева для наращивания на первом шаге тела цикла дают различные конкретные варианты алгоритма построения SST.
- Иркутский государственный технический университет
- 1. Определения графов
- 7.4.5. Массив дуг
- 8.4.2. Трансверсаль
- 8.5.4. Алгоритм нахождения максимального потока
- 8.6.3. Выделение компонент сильной связности
- 8.7.1. Длина дуг
- 8.7.2. Алгоритм Флойда
- 8.7.3. Алгоритм Дейкстры
- Глава 9 Деревья
- 9.1. Свободные деревья
- 9.1.1. Определения
- 9.1 .2. Основные свойства деревьев
- 9.2. Ориентированные, упорядоченные и бинарные деревья
- 9.2.1. Ориентированные деревья
- 9.2.2. Эквивалентное определение ордерева
- 9.2.3. Упорядоченные деревья
- 9.2.4. Бинарные деревья
- 9.3. Представление деревьев в эвм
- 9.3.1. Представление свободных, ориентированных и упорядоченных деревьев
- 9.3.2. Представление бинарных деревьев
- 9.3.3. Обходы бинарных деревьев
- 9.3.4. Алгоритм симметричного обхода бинарного дерева
- 9.4. Деревья сортировки
- 9.4.1. Ассоциативная память
- 9.4.2. Способы реализации ассоциативной памяти
- 9.4.3. Алгоритм бинарного (двоичного) поиска
- 9.4.4. Алгоритм поиска в дереве сортировки
- 9.4.5. Алгоритм вставки в дерево сортировки
- 9.4.6. Алгоритм удаления из дерева сортировки
- 9.4.7. Вспомогательные алгоритмы для дерева сортировки
- 9.4.8. Сравнение представлений ассоциативной памяти
- 9.4.9. Выровненные деревья
- 9.4.10. Сбалансированные деревья
- 9.5. Кратчайший остов
- 9.5.1. Определения
- 9.5.2. Схема алгоритма построения кратчайшего остова
- 9.5.3. Алгоритм Краскала
- Глава 10 Циклы
- 10.1. Фундаментальные циклы и разрезы
- 10.1.1. Циклы и коциклы
- 10.1.2. Независимые множества циклов и коциклов
- 10.1.3. Циклический и коциклический ранг
- 10.2. Эйлеровы циклы
- 10.2.1. Эйлеровы графы
- 10.2.2. Алгоритм построения эйлерова цикла в эйлеровом графе
- 10.2.3. Оценка числа эйлеровых графов
- 10.3. Гамильтоновы циклы
- 10.3.1. Гамильтоновы графы
- 10.3.2. Задача коммивояжера
- Глава 11 Независимость и покрытия
- 11.1. Независимые и покрывающие множества
- 11.1.1. Покрывающие множества вершин и ребер
- 11.1.2. Независимые множества вершин и ребер
- 11.1.3. Связь чисел независимости и покрытий
- 11.2. Построение независимых множеств вершин
- 11.2.1. Постановка задачи отыскания наибольшего независимого множества вершин
- 11.2.2. Поиск с возвратами
- 11.2.3. Улучшенный перебор
- 11.2.4. Алгоритм построения максимальных независимых множеств вершин
- 11.3. Доминирующие множества
- 11.3.1. Определения
- 11.3.2. Доминирование и независимость
- 11.3.3. Задача о наименьшем покрытии
- 11.3.4. Эквивалентные формулировки знп
- 11.3.5. Связь знп с другими задачами
- Глава 12 Раскраска графов
- 12.1. Хроматическое число
- Ух, . . . ,Vn одноцветные классы,доказательство
- 12.2. Планарность
- 12.2.2. Эйлерова характеристика
- 12.2.3. Теорема о пяти красках
- 12.3. Алгоритмы раскрашивания
- 12.3.1. Точный алгоритм раскрашивания
- 12.3.2. Приближенный алгоритм последовательного раскрашивания
- 12.3.3. Улучшенный алгоритм последовательного раскрашивания