8.6.3. Выделение компонент сильной связности
Следующий алгоритм, основанный на методе поиска в глубину, находит все компоненты сильной связности орграфа.
Алгоритм 8.2. Выделение компонент сильной связности Вход: орграф G(V, Е), заданный списками смежности Г(г;).
Выход: список С компонент сильной связности, каждый элемент которого есть список вершин, входящих в компоненту сильной связности. С: = 0 for v e V do
M[v]: ={v} { M[v] список вершин, входящих в ту же КСС, что и v }
e[v]: = 0 { все вершины не рассмотрены } end for while V ф 0 do
select v g V { взять v из V }
Т <— v { положить v в стек }
е[г>]: = 1 { отметить v }
КСС { вызов процедуры КСС } end while
Основная работа выполняется рекурсивной процедурой без параметров КСС, которая использует стек Т для хранения просматриваемых вершин. Процедура КСС выделяет все КСС, достижимые из вершины, выбранной в основном алгоритме.
if Т = 0 then
return{ негде выделять }
end if
v <— Т; v —» Т { стоим в вершине г>} if T[v] П V = 0 then
C: = C\JM[v] {этоКСС } V : = V \ {v} { удалить вершину } v «— Т { снять г) со стека } КСС { возврат из тупика } else
for и 6 Г[г>] do if e[u] = 0 then u —> Г { положить и в стек } е[и]: = 1 { отметить и } else repeat
w <— Т { ш — склеиваемая вершина } \/ : = V \ {w} { удалить ее } Г [и]: = Г [и] U Г [ад] { запомнить смежность } М[и] : = М[и} U М[го]{ склеивание вершин } until и = w
w —>• Т{ чтобы не убрать ту вершину, } V : = V U {w}{ к которой слили } end if
КСС { поиск в глубину }
end for
end if
Кратчайшие пути
Задача нахождения кратчайшего пути в графе имеет столько практических применений и интерпретаций, что читатель, без сомнения, может сам легко привести множество примеров. Здесь рассматриваются два классических алгоритма, которые обязан знать каждый программист.
- Иркутский государственный технический университет
- 1. Определения графов
- 7.4.5. Массив дуг
- 8.4.2. Трансверсаль
- 8.5.4. Алгоритм нахождения максимального потока
- 8.6.3. Выделение компонент сильной связности
- 8.7.1. Длина дуг
- 8.7.2. Алгоритм Флойда
- 8.7.3. Алгоритм Дейкстры
- Глава 9 Деревья
- 9.1. Свободные деревья
- 9.1.1. Определения
- 9.1 .2. Основные свойства деревьев
- 9.2. Ориентированные, упорядоченные и бинарные деревья
- 9.2.1. Ориентированные деревья
- 9.2.2. Эквивалентное определение ордерева
- 9.2.3. Упорядоченные деревья
- 9.2.4. Бинарные деревья
- 9.3. Представление деревьев в эвм
- 9.3.1. Представление свободных, ориентированных и упорядоченных деревьев
- 9.3.2. Представление бинарных деревьев
- 9.3.3. Обходы бинарных деревьев
- 9.3.4. Алгоритм симметричного обхода бинарного дерева
- 9.4. Деревья сортировки
- 9.4.1. Ассоциативная память
- 9.4.2. Способы реализации ассоциативной памяти
- 9.4.3. Алгоритм бинарного (двоичного) поиска
- 9.4.4. Алгоритм поиска в дереве сортировки
- 9.4.5. Алгоритм вставки в дерево сортировки
- 9.4.6. Алгоритм удаления из дерева сортировки
- 9.4.7. Вспомогательные алгоритмы для дерева сортировки
- 9.4.8. Сравнение представлений ассоциативной памяти
- 9.4.9. Выровненные деревья
- 9.4.10. Сбалансированные деревья
- 9.5. Кратчайший остов
- 9.5.1. Определения
- 9.5.2. Схема алгоритма построения кратчайшего остова
- 9.5.3. Алгоритм Краскала
- Глава 10 Циклы
- 10.1. Фундаментальные циклы и разрезы
- 10.1.1. Циклы и коциклы
- 10.1.2. Независимые множества циклов и коциклов
- 10.1.3. Циклический и коциклический ранг
- 10.2. Эйлеровы циклы
- 10.2.1. Эйлеровы графы
- 10.2.2. Алгоритм построения эйлерова цикла в эйлеровом графе
- 10.2.3. Оценка числа эйлеровых графов
- 10.3. Гамильтоновы циклы
- 10.3.1. Гамильтоновы графы
- 10.3.2. Задача коммивояжера
- Глава 11 Независимость и покрытия
- 11.1. Независимые и покрывающие множества
- 11.1.1. Покрывающие множества вершин и ребер
- 11.1.2. Независимые множества вершин и ребер
- 11.1.3. Связь чисел независимости и покрытий
- 11.2. Построение независимых множеств вершин
- 11.2.1. Постановка задачи отыскания наибольшего независимого множества вершин
- 11.2.2. Поиск с возвратами
- 11.2.3. Улучшенный перебор
- 11.2.4. Алгоритм построения максимальных независимых множеств вершин
- 11.3. Доминирующие множества
- 11.3.1. Определения
- 11.3.2. Доминирование и независимость
- 11.3.3. Задача о наименьшем покрытии
- 11.3.4. Эквивалентные формулировки знп
- 11.3.5. Связь знп с другими задачами
- Глава 12 Раскраска графов
- 12.1. Хроматическое число
- Ух, . . . ,Vn одноцветные классы,доказательство
- 12.2. Планарность
- 12.2.2. Эйлерова характеристика
- 12.2.3. Теорема о пяти красках
- 12.3. Алгоритмы раскрашивания
- 12.3.1. Точный алгоритм раскрашивания
- 12.3.2. Приближенный алгоритм последовательного раскрашивания
- 12.3.3. Улучшенный алгоритм последовательного раскрашивания