logo search
омм

26. Геометрична інтерпретація задачі цілочислового програмування.

 Для знаходження оптимального розв’язку цілочислових задач застосовують спеціальні методи. Найпростішим з них є знаходження оптимального розв’язку задачі як такої, що має лише неперервні змінні, з дальшим їх округленням. Такий підхід є виправ­даним тоді, коли змінні в оптимальному плані набувають досить великих значень у зіставленні їх з одиницями вимірювання. Нехай, наприклад, у результаті розв’язування задачі про поєднання галузей у сільськогосподарському підприємстві отримали оптимальне поголів’я корів — 1235,6. Округливши це значення до 1236, не припустимося значної похибки. Проте за деяких умов такі спрощення призводять до істотних неточностей. Скажімо, множина допустимих розв’язків деякої нецілочислової задачі лінійного програмування має вигляд, зображений на рис. 6.1:

Максимальне значення функ­ціонала для даної задачі знаходиться в точці В. Округлення дасть таке значення оптимального плану (точка D на рис. 6.1). Очевидно, що точка D не може бути розв’язком задачі, оскільки вона навіть не належить множині допустимих роз­в’язків (чотирикутник ОАВС), тобто відповідні значення змінних не задовольнятимуть систему обмежень задачі.

Зауважимо, що геометрично множина допустимих планів будь-якої лінійної цілочислової задачі являє собою систему точок з цілочисловими координатами, що знаходяться всередині опуклого багатокутника допустимих розв’язків відповідної нецілочислової задачі. Отже, для розглянутого на рис. 6.1 випадку множина допустимих планів складається з дев’яти точок (рис. 6.2), які утворені перетинами сім’ї прямих, що паралельні осям Ох1 та 2 і проходять через точки з цілими координатами 0, 1, 2. Для знаходження цілочислового оптимального розв’язку пряму, що відповідає цільовій функції, пересуваємо у напрямку вектора нормалі до перетину з кутовою точкою утвореної цілочислової сітки. Координати цієї точки і є оптимальним цілочисловим розв’язком задачі. У нашому прикладі оптимальний цілочисловий розв’я­зок відповідає точці М ( ).

Очевидно, особливість геометричної інтерпретації цілочислової задачі у зіставленні зі звичайною задачею лінійного програмування полягає лише у визначенні множини допустимих розв’язків. Областю допустимих розв’язків загальної задачі лінійного програмування є опуклий багатогранник, а вимога цілочисловості розв’язку приводить до такої множини допустимих розв’язків, яка є дискретною і утворюється тільки з окремих точок. Якщо у разі двох змінних розв’язок задачі можна відшукати графічним методом, тобто, використовуючи цілочислову сітку, можна досить просто знайти оптимальний план, то в іншому разі необхідно застосовувати спеціальні методи.

Рис. 6.1