4.3.6 Интерполяционные многочлены Ньютона
Если точка интерполирования находится в начале или в конце таблицы, то не всегда возможно выбрать достаточное количество узлов слева и справа отдля построения необходимых конечных разностей. В этом случае используются специальные формы интерполяционного многочлена.
Пусть точка расположена в близи первого узла сетки. рассмотрим переменнуюt, определяемую соотношением (4.21), и построим интерполяционный многочлен.
Первый интерполяционный многочлен Ньютона обычно обозначается .
. (4.30)
Остаточный член относительно переменной t можно представить в виде:
; , (4.31)
а оценку погрешности приближенного значения (погрешности метода) – в виде:
, (4.32)
где .
Пусть точка расположена вблизи последнего узла сетки. Для этой сетки, снова используя переменнуюt, определяемую соотношением (4.21), построим интерполяционный многочлен.
Второй интерполяционный многочлен Ньютона обычно обозначается .
. (4.33)
с остаточным членом
, (4.34)
и оценкой погрешности приближенного значения
, (4.35)
где .
Формулы (4.30) и (4.33) часто называют соответственно интерполяционными формулами Ньютона для интерполирования вперед и назад.
Лекция № 12
- Министерство образования и науки Российской Федерации
- Оглавление
- Лекция № 1
- 1. Особенности математических вычислений, реализуемых на эвм: теоретические основы численных методов: погрешности вычислений
- 1.1. Дискретизация
- 1.3. Погрешность
- 1.4. Устойчивость и сложность алгоритма (по памяти, по времени)
- 2.1. Основные понятия линейной алгебры. Классификация методов решения
- 2.2. Метод исключения Гаусса. Вычисление определителя и обратной матрицы методом исключения
- 2.3. Численные методы решения линейных уравнений
- 2.3.1. Метод прогонки
- 2.3.2. Итерационные методы
- 3.1. Решение нелинейных уравнений
- 3.1.1. Метод половинного деления
- 3.1.2. Метод простой итерации
- 3.1.3. Метод Ньютона
- 3.1.4. Метод секущих
- 3.1.5. Метод парабол
- 3.2. Методы решения нелинейных систем уравнений
- 4.1.Функция и способы ее задания
- 4.2 Основные понятия теории приближения функций
- 4.3 Интерполяция функций
- 4.3.1 Интерполирование с помощью многочленов
- 4.3.2 Погрешность интерполяционных методов
- 4.3.3 Интерполяционный многочлен Лагранжа
- 4.3.4 Конечные разности
- 4.3.5 Интерполяционные многочлены Стирлинга и Бесселя
- 4.3.6 Интерполяционные многочлены Ньютона
- 4.3.7 Разделенные разности
- 4.3.8 Интерполяционный многочлен Ньютона для произвольной сетки узлов
- 4.3.9 Итерационно-интерполяционный метод Эйткина
- 4.3.10 Интерполирование с кратными узлами
- 4.4 Равномерное приближение функций. Приближение методом наименьших квадратов
- 5.1. Численное дифференцирование
- 5.2. Формулы численного интегрирования
- 5.3. Решение обыкновенных дифференциальных уравнений. Метод конечных разностей для численного решения дифференциальных уравнений
- Интегрирование дифференциальных уравнений с помощью степенных рядов
- 5.4. Преобразование Фурье
- 5.4.1 Применения преобразования Фурье
- 5.4.2 Разновидности преобразования Фурье Непрерывное преобразование Фурье
- Ряды Фурье
- Дискретное преобразование Фурье
- Оконное преобразование Фурье
- Другие варианты
- 5.4.3 Интерпретация в терминах времени и частоты
- 5.4.4 Таблица важных преобразований Фурье
- Библиографический список