Предисловие
В настоящее время в связи с введением в школьный стандарт математического образования элементов комбинаторики и теории вероятностей, остро встают проблемы методической обеспеченности школьников и абитуриентов соответствующей литературой.
О необходимости изучения в школе элементов комбинаторики и теории вероятностей речь идет очень давно. Так ещё в 1899 году попечитель Московского учебного округа профессор П. А. Некрасов на совещании по вопросам о средней школе говорил об огромном значении в школьном образовании того, что сейчас принято называть стохастической линией в преподавании математики. Методические указания как раз и посвящены изложению тех понятий, фактов, задач и обстоятельств, с которых, собственно, берет свое начало эта самая стохастическая линия.
В школьном стандарте по математике перечисляются следующие вопросы комбинаторики и теории вероятностей.
«Поочередный и одновременный выбор нескольких элементов из конечного множества. Формулы числа перестановок, сочетаний, размещений. Решение комбинаторных задач. Формула бинома Ньютона. Свойства биномиальных коэффициентов. Треугольник Паскаля.
Элементарные и сложные события. Рассмотрение случаев и вероятность суммы несовместных событий, вероятность противоположного события. Понятие о независимости событий. Вероятность и статистическая частота наступления события».
Цель указаний: дать некоторый минимум, доступный слушателям подготовительных курсов и достаточный для формирования у них первоначальных комбинаторно-вероятностных представлений (в рамках школьного стандарта).
Главной целью изучения элементов комбинаторики является формирование специального типа мышления – комбинаторного, связанного с перебором и подсчетом числа конфигураций элементов, удовлетворяющих определенным условиям. Существенность развития комбинаторных возможностей интеллекта учащихся очевидна и с общих позиций теории развития личности, и с точки зрения различного рода практических приложений.
Знакомство с теорией вероятностей происходит в последних пяти параграфах. Собственно, никакой теории нет. Изложение ведется в рамках классического определения вероятности и, по существу, представляет собой практический полигон, на котором применяются полученные ранее комбинаторные навыки.
- Новоселов о.В., Скиба л.П. Комбинаторика и вероятность
- Предисловие
- Введение
- Принцип умножения
- Принцип сложения
- Факториал
- Размещения
- Перестановки
- Свойства размещений и перестановок
- Сочетания
- Свойства сочетаний
- Свойства биномиальных коэффициентов
- Размещения с повторениями
- Перестановки с повторениями
- Сочетания с повторениями
- Формула включений и исключений
- Алгебра событий
- Вероятность случайных событий
- Умножение вероятностей
- Сложение вероятностей
- Вероятность появления хотя бы одного события
- Варианты самостоятельных работ Вариант №1
- Вариант №2
- Вариант №3
- Вариант №4
- Вариант №5
- Вариант №6
- Вариант №7
- Библиографический список
- Оглавление