logo
Комбинаторика (Под_курсы) 2

Вариант №4

  1. Решить уравнение .

Ответ: x=11.

  1. Найти член разложения , содержащийx3 .

Ответ: .

  1. Пассажирский поезд состоит из трех багажных вагонов и восьми купированных. Сколькими способами можно сформировать состав, если багажные вагоны должны находиться в его начале?

Ответ: .

  1. Из семи гвоздик и пяти тюльпанов надо составить букет, состоящий из трёх гвоздик и двух тюльпанов. Сколькими способами можно это сделать?

Ответ: .

  1. На призывном пункте находится 15 призывников. Сколькими способами можно поставить в колонну по три человека?

Ответ: .

  1. Сколькими способами можно выбрать 12 человек из 17, если определенные два человека из этих 17 не могут быть выбраны вместе?

Ответ: .

  1. В первенстве края по футболу участвуют 11 команд. Сколько существует различных способов распределения мест в таблице розыгрыша, если на первое место могут претендовать только 4 определенные команды?

Ответ: .

  1. 8 вариантов контрольной работы случайным образом распределены среди 6 студентов. Найти вероятность того, что варианты с номерами 7 и 8 не будут использованы?

Ответ: .

  1. В первой урне находятся 5 оранжевых и 4 фиолетовых шара, во второй – 3 оранжевых и 7 фиолетовых шара. Из каждой урны случайным образом вынули по три шара. Найти вероятность того, что все шары будут одного цвета.

Ответ: .

  1. В журнале из 20 страниц на каких-либо трех страницах помещают случайным образом одинаковую рекламу некоторой фирмы. Какова вероятность, что эта реклама будет размещена на страницах, идущих одна за другой?

Решение: В данной задаче порядок размещения рекламы неважен. Следовательно, в данной задаче мы имеем дело с сочетаниями. Общее число размещений рекламы в журнале . Еслиреклама будет размещена на страницах, идущих одна за другой, то эти страницы можно считать за одну. Тогда число страниц будет равно 18, следовательно, и число благоприятствующих исходов будет равно m=18. Таким образом, .

  1. В ОТК поступают 4 детали. Вероятность того, что деталь бракованная равна 0,1. Проверка производится последовательно до обнаружения бракованной детали. Найти вероятность того, что будут проверены все 4 детали.

Ответ. 0,90,90,9=0,729.