2.2. Алгебра высказываний
Математическая логика – это наука о методах рассуждений, при которых мы отвлекаемся от содержания рассуждений, а используем только их форму и значение.
Основным понятием математической логики является «простое высказывание».
Простое высказывание – это некоторое повествовательное предложение, которое может быть либо истинно, либо ложно, но не то и не другое одновременно. Простое высказывание обозначается маленькими латинскими буквами.
Высказывания, которые получаются из простых с помощью грамматических связок «и», «или», «не», «тогда и только тогда», «либо…, либо…», «если…, то…» называются составными, или
формулами алгебры высказываний. Формулы алгебры высказыва-
ний обозначаются большими латинскими буквами.
Формула А, всегда истинная, называется тождественно ис-
тинной формулой, или тавтологией, А=1.
Формула В, всегда ложная, называется тождественно ложной формулой, или противоречием, В=0.
Рассматривая высказывания, мы абстрагируемся от их смысла, нас интересует их истинность или ложность. Мы пишем а=1, если а – истинно, и а=0, если а – ложно.
Значение истинности для каждой логической операции в зависимости от истинности её операндов описывается таблицей истинности.
Таблица истинности представляет собой таблицу, устанавливающую соответствие между возможными значениями наборов переменных и значениями операции [2].
Таблицы истинности логических операций позволяют определить значение, которые они принимают при различных значениях переменных, сравнивать операции между собой, определять, удовлетворяют ли операции заданным свойствам.
Рассмотрим основные операции над высказываниями:
•дизъюнкция V;
•конъюнкция &;
- Предисловие
- 1.2.Теория множеств
- 1.2.1. Основные понятия теории множеств
- 1.2.4. Свойства операций над множествами
- 1.3.4. Свойства бинарных отношений
- 1.3.7. Отношение толерантности
- 1.3.8. Операции над отношениями
- 2.1. Фундаментальные алгебры
- 2.2. Алгебра высказываний
- 2.6. Булевы функции
- 2.7. Формы представления логических функций
- 2.10. Построение логических схем
- Глава 3. Формальные теории
- 3.1. Основные свойства формальных теорий
- 3.1.1. Выводимость
- 4.1. Прямые доказательства
- 4.2.Косвенные доказательства
- Глава 5. Основы комбинаторики
- 5.4. Разбиения
- 5.7. Производящие функции
- Глава 6. Основы теории графов
- 6.1. Основные понятия
- 6.6. Устойчивость графов
- 6.6.1. Внутренняя устойчивость
- 6.7.3. Двудольное представление графов
- 6.10. Построение графов
- 6.10.1. Преобразование прилагательных в числительные
- 6.10.3. Оценка количества ребер сверху и снизу
- 7.1. Введение в теорию нечетких моделей
- 7.1.1. Принятие решений в условиях неопределенности
- 7.2. Нечеткие множества. Базовые определения
- 7.2.1. Базовые и нечеткие значения переменных
- 7.3.Операции над нечеткими множествами
- 7.3.5. Операции «равенство» и «разность»
- 7.7. Нечеткие числа
- 7.8.Приближенные рассуждения
- 7.8.1. Нечеткая лингвистическая логика
- 7.8.2. Композиционное правило вывода
- Список литературы