shpora_ryady
Теорема Дирихле.
{Т}Пусть ф-ция f(x) удовл условию Дирихле 1)f(x) на (-l l) может иметь лишь нечетное число точек разрыва причем все они 1-го рода. 2)интервал (-l l) может быть разбит на ненечетное число промежутков в каждом из которых f(x) монотонная ф-ция тогда ряд фурье для f(x) на (-l l) сход: 1)в точке где f(x) непрерывна к ф-ции f(x) 2) в точках разрыва к числу f(x-0)+f(x+0)/2
-
Содержание
- Числ послед и пределы
- Опред ряда частн суммы ряда.
- Необх признак сход ряда.
- Критерий сход знакопост рядов.
- Интегральн признак сход.
- Призр срав в ф-ме нерав.
- Призр срав в ф-ме рав.
- Призн Деламбера ф-ме нерав.
- Призн Деламбера в пред ф-ме.
- Признак Коши в ф-ме нерав и в пред ф-ме.
- Абсолют и усл сход рядов.
- Теорема об абс сход рядов.
- Знакочеред ряды признак лейбница.
- Функц ряды.
- Форм св-ва равномер сход рядов.
- Степ ряд т Абеля
- Интегр и дофф степ рядов.
- Разл ф-ции в степ ряд Ряд тейтора.
- Условие разлож ф-ции в ряд Тейлора.
- Методы разл в ряд Тейлора.
- Опред ортогональ сист на отрезке.
- Ряд фурье по орто сист ф-ций на отрезке. Формулы коэфф.
- Переод ф-ции и их св-ва.
- Теорема Дирихле.
- Разлож в ряд фурье по sin и cos.
- Ряд фурье в комплексной ф-ме.
- Интеграл фурье в действ ф-ме.
- Интеграл фурье в комплекс форме.